
Introduction to Pseudo and
Stackable File Systems

under BSD

Allan Fields
Afields Research / AFRSL

http://afields.ca
bsd@afields.ca

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

2

Outline
● Introduction

● User-space and Kernel-space
● What is the VFS?
● What are Vnodes?
● Vnode Operations
● Mount points & the mount

structure
● Root Vnode

● Traditional File Systems
● Namespace

● Pseudo File Systems
● Portal File Systems

● Stackable File Systems
● What is Vnode Stacking?
● How does it work?
● Applications of Vnode

Stacking

● Templated Base Filesystems
● FiST and fistgen
● Supported Platforms
● The FiST language
● Pros & Cons of template

filesystems
● Developing a template fs in

FiST

● User Filesystems
● "Next Generation" Filesystems

● Extending Filesystem
Semantics

● Adapting Filesystem
Namespaces

● Conclusions
● Q&As

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

3

Introduction
● The BSD file system was first developed at

University of California at Berkeley
● Significant portions of Free/Net/OpenBSD

file system based on 4.4BSD code
● BSD Operating Systems default to UFS file

system with FFS filestore
● Recent changes to UFS in FreeBSD include:

● Snapshots: ability to save state of mounted file
system at point in time while continuing use

● UFS2 inode format - supports: Extended
Attributes; 64-bit fields

● Access Control Lists using EAs

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

4

User­space and Kernel­space
● BSD Operating Systems use virtual memory

- hardware protection of address space
● User space: User process in the BSD

Operating Systems run in user-space or
user land

● Each process has own address space;
process structure, user+kernel stack, heap;
text and data pages

● Kernel space (kernel land): the kernel has
own address space

● System Calls (syscalls) interface to kernel
from userland processes

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

5

What is the VFS?
● VFS is kernel layer, provides object oriented

interface to file systems
● The vnode interface provides unified set of

routines called by kernel
● Abstracts interfacing details from

underlying file systems
● Supports multiple file system types
● VFS provides a common set of routines for

working with file systems: mounting, sync,
quota, etc.

● Standard/default setof vfsops

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

6

What are Vnodes?
● File system in Unix allows uniform access to

multiple objects types
● Vnode: generalized file system object -

struct vnode
● Vnodes can represent different types of

objects
● VREG: regular files
● VDIR: directories
● VBLK: block devices
● VCHR: character devices
● VLNK: link devices
● VSOCK: sockets
● VFIFO: named pipe

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

7

Vnode Operations
● Vnode Operations (vnops) are basic file

system primitives for operating on vnodes
● vnode operation vector: structure contains

function pointers to routines
● VOP_* Macros: provide object oriented

calling of vop on vnode
● Default vnode ops: Standard routines

defined by system; vnode operations not
defined by file system fall back on defaults

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

8

The Big Picture
● User processes performing I/O or lookups

call standard library functions such as:
● read(), write(), readdir()

● This initiates syscall into kernel
● Kernel then references vnode and calls

appropriate vnode operation

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

9

Namespace
● Namespaces composed of symbolic

identifiers, usually representative of objects
● Namespaces have two primary elements:

● Names or identifiers:
● point to underlying objects
● usually unique at any given scope

● Spaces:
● flat / single-level namespaces
● hierarchical directories (trees)

● BSD filesy stem namespace is hierarchical,
path based; Element of namespace is path
component

● Lookup recursively resolves vnode
referenced by path

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

10

Pseudo File Systems
● Pseudo File Systems behave like normal file

systems with some primary differences
● Allow creation of arbitrary file hierarchies

accessible by standard user binaries
● Provide uniform access to objects with

name and data components, convenient way
to represent hierarchical information

● Can expose non-filesystem objects through
VFS/vnode layers

● Names may not correspond 1:1 to files
● May not have backing storage at all
● Concerned with “top-half”: namespace, file

system semantics

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

11

Pseudo File Systems Include..
● procfs

● Provides a file system mount with processes
● Process status and control through standard file

entries
● devfs

● Provides dynamicaly generated tree w/ device
nodes

● Old approach was manually created device
entries in user-space

● Interface directly to kernel device drivers
● Now standard in FreeBSD; use in jails

● portalfs
● Establish TCP connections through FS
● Socket semantics in file system
● Pipes and naïve tools

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

12

Practical Benefits
● Dynamically generated hierarchies can

accurately represent changing structures,
entities w/o need to maintain corresponding
file entries

● Use existing tools, standar library file
functions: open(), read(), write(), etc..

● Exploits *nix file system closure: accesible
from shell

● FreeBSD PseudoFS
● Generic code for constructing pseudo file

system trees
● Interfaces VFS and provides API for building

pseudo file systems

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

13

Stackable File Systems
● Stackable file systems provide modular

object-oriented approach to building file
system

● Mounting stackable file systems on top of
each other allows build complex behaviour

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

14

Applications of Vnode Stacking
● I/O Request Transformation

● Replication
● Caching
● Fail-over

● Transformation of Lookup Requests
● Overlays/Union File Systems

● Security, Logging and Auditing
● User and attribute mapping
● Encryption, Compression

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

15

Template Based File Systems
● Template Based File Systems are file

systems which reuse templates to generate
file system code

● Designed for portability between Operating
Systems with differing vnode interfaces

● Templates take care of vnode interface
details.

● Template file systems aren't just for file
system developers:

● System administrators have easy access to
cross-platform file systems

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

16

FiST and fistgen
● FiST or the File System Translator:

language for creating template based file
systems

● Fistgen: Tool to generate file system code
based on FiST code and file system
templates

● Supports vnode stacking, fan-in and fan-out
● Enables:

● portability of code
● reduced development time and effort

● Minimal performance overhead
● Many have expressed interest using FiST

under BSD

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

17

Supported Platforms
● fistgen provides templates for several

platforms:
● Linux
● FreeBSD
● Solaris

● Linux support is most mature, latest
development efforts support Linux kernels

● Current state of FreeBSD support:
● FreeBSD support vastly improved in recent

releases
● FreeBSD templates still require work to support

wider range of releases

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

18

Work on fistgen FreeBSD port
● Problems w/ templates & different releases
● Keeping templates synchronized with

changes to VFS, vnode interfaces (requires
periodic maintenance)

● Linux-supported features needing poring:
● SCAs: Size Change Algorithm support
● Attach-mode mounts

● Fistgen has potential for true cross-platform
file system on major free nixes

● Porting to additional platforms requires
more templates to be built: Net/OpenBSD

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

19

FiST Dev. Flowchart

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

20

The FiST language
● FiST is intermediary language: contains

declarations, rules and C code-blocks
● fistgen fills-out template, produces C code,

sets up Makefile
● Supports pre-call, call & Post-call operation
● Hooks into vnode ops: before, during &

after call to vnop, call any further vnops
● insert arbitrary blocks of code (doesn't have

to be vnode specific)
● Define filter functions to {en,de}code data
● Read-only (readops), writeonly (writeops)

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

21

Pros of Template File Systems
● Portability: cross-platform support
● Ease of Use: potentially shallower developer

learning curve
● Frees developer to focus on file system

specific code, semantics
● Maintainability - easier to maintain:

● 1 set of templates than 7-8 different file systems
● 4 sets of templates than 4 ports of same file

system

● Extensible approach to constructing file
systems

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

22

Cons of Template File Systems
● Templates can break easily with changes to

vnode interface (also true w/ non-template fs)
● Some templates aren't complete: FreeBSD

templates (more developers needed)
● Slight overhead incurred (minimal impact)
● Coding Trade-off: easier to develop with,

but loose some control over code (can be
"tweaked" afterward, address some
problems manually)

● Some loss of versatility: Not all things are
possible in FiST (support could be added)

● Exporting FS over NFS can be problematic

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

23

Developing a Template fs in FiST
● Process for creating a file system with

fistgen:
● Fetch fistgen tarball

fetch ftp://ftp.filesystems.org/fist/fistgen-0.0.n.tar.gz
tar xzf fistgen-0.0.n.tar.gz

● Build fistgen cd fistgen-0.0.n; ./configure&&make

● Build test filesystems make genall # Test target only works on Linux

● Create a .fist file cp testfs/wrapfs.fist testfs.fist

● (Add code here) $EDITOR testfs.fist

● Generate code fistgen testfs.fist

● Run make cd out/testfs; make

● Test kernel module kldload ./testfs.ko

● Attempt mount mkdir /mnt/test

● Sanity Checks ./mount_testfs /tmp /mnt/test
mkdir /mnt/test/1; rmdir /mnt/test/1
touch /mnt/test/2; rm /mnt/test/2
dd if=/dev/random of=/mnt/test/3; dd if=/mnt/test/3 of=/dev/null

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

24

User File Systems
● User file systems such a cfsd: user-process
● NFS interface, kernel-stub
● Problems w/ user file systems under BSD:
● Slow: context-switch necessary to service

I/O request
● Scalability limited: single-process user-file

systems create bottlenecks
● Hurd: microkernel based, provides API for

filesystem sevices in userspace
● DragonFlyBSD: proposing various changes:

message passing, VFS; could make user file
systems practical

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

25

"Next Generation" File Systems
● Latest file systems to hit the scene provide

journaling or balanced-tree implementations
● Differing on-disk structure (filestore layout)
● Include enhanced semantics
● Mostly monolithic development model:

● Separate/”full” file systems (unit-wise
replacement for existing FS)

● Not the Stacking Model
● Implement both namespace and filestore

components
● BSD focus remains on extending UFS and

supporting additional file systems
● Linux has three major next-gen file systems

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

26

Next­gen includes..
● XFS (SGI) [Popular journaling File System]

● Some BSD ports available or in progress
● Ext3fs

● Next generation of Linux Extended File System
● ReiserFS (Namesys) [B+Tree Based]

● currently Linux-only development; major distros
● significant departure from traditional file

systems: reiser4 creates new syscalls,
significant changes in semantics

● supports plug-ins
● BeFS (Be, Inc.)

● BeOS file system, was clean reimplementation
of traditional inode-based file system

● Provided native [extended] attributes and
indexing (“database” like features)

● BeOS/BeFS being reimplemented: OpenBeOS

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

27

Adapting File System Namepsaces
● pseudo and stackable file systems provide

ability to adapt namespaces to specific
purposes

● Examples:
● procfs (pseudo) - creates a namespace modeled

on running processes
● unionfs (stackable) - combines namespaces of

two file systems; overlays

● VFS vs. other kernel APIs

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

28

Conclusions
● Many possibilities exist for pseudo and

stackable file systems
● Pseudo file systems provide
● Wide-ranging applications for advanced file

systems
● Going beyond a simple 1:1 filename:object

mapping

● Accompanying paper: Introduction to
Pseudo and Stackable File systems under
BSD

● See:
● More info: http://afields.ca/bsdcan/2004
● FiST homepage: http://www.filesystems.org

Introduction to Pseudo and Stackable File Systems under BSD fs_pseudo_stack.sxi,v 1.1 2004/05/14 afields

29

Q&As
● Questions? Comments?

● Speaking of name spaces: "file system" vs.
"filesystem"?
● Liberals: filesystem is a new word!
● Conservatives: file system (two words)
● Traditionalists: Don't you mean: microcomputer

disk filing system?
● Pragmatists: Randomly placed use of both

forms, doesn't matter
● Foldoc: filesystem syn. file system

