Introduction to pf

Ryan McBride <mcbride@openbsd.org>

Overview

- The Basics
 - Normalisation
 - Filtering
 - Translation
- Advanced Toolkits
 - Denial of Service Mitigation
 - Firewall Redundancy
 - Load Balancing

New stuff

Normalization (scrub)

- Sanitizes packet content to remove ambiguity
- IP fragment reassembly
- IP normalisation
- TCP normalisation
 - Illegal flag combinations
 - TCP options
 - PAWS (Protect Against Wrapped Sequence Numbers)
- Enforce minimum TTL

- Filterable Attributes
- Stateful Rules
- Tables
- Anchors

Filterable Attributes (protocol independent)

- Interface
- Direction
- Address family
- Protocol
- Source/destination address
- TOS
- Fragments
- IP options
- Tagging

Filterable Attributes (protocol dependant)

- Source/destination port (TCP and UDP)
- ICMP code and type (ICMP)
- User/group (TCP and UDP)
- TCP flags (TCP)
- Source OS (TCP)

OS Fingerprints

- Source OS only
- Looks at initial TCP packet
- Based on p0f, by lcamtuf@coredump.cx
- Can filter by general OS or specific version/patchlevel
- Can be spoofed
 - A policy tool, not a security tool

Tagging

- Rules can apply a named tag to a packet
 - Only one tag per packet
 - Pass rules with tagging must be stateful
- Subsequent rules can match on that tag
- Bridge code can also tag packets
- Allows the separation of classification and policy

Stateful Rules

- States indexed in a red-black tree
 - State searches are faster than rule lookup
- States increase security
 - Can control who initiates a connection
 - TCP segments must be within window
 - reset must be on edge of window

Tables

- Implemented as radix tree
- Very fast lookups
- Bytes/packet counters for each table entry

Anchors

- Placeholder for rules to be loaded later
- Changing anchor does not change main ruleset

Translation

- nat source address translation
- rdr destination address translation
- binat bidirectional address translation

Denial of Service Mitigation

- Caveat: very difficult to combat bandwidth-based DoS
- synproxy
- Adaptive Timeouts
- max-src-states and max-src-nodes
- ALTQ
- Input queue congestion handling

DoS Mitigation Synproxy

- pf completes the 3 way handshake
- Does 3 way handshake with destination
- Remaining traffic is a normal stateful connection
 - (with modulated sequence numbers)

Adaptive Timeouts

- Scales timeouts as the total number of states increases
- Unused states die more quickly

max-src-states and max-src-nodes

- Works with 'source-tracking'
 - states tracked by source IP
- max-src-states limits states per source
- max-src-nodes limits number of sources

ALTQ

- Bandwidth shaping
- Can filter traffic based on filter attributes
- Works only with stateful rules
- Multiple queueing disciplines supported
- Most effective in front of bandwidth bottleneck
 - eg at upstream ISP(s)

Input queue congestion handling

- Under some dDoS attacks CPU is overloaded
 - Input queue fills up
 - Machine becomes unresponsive
- When input queue is full stop evaluating ruleset
 - stateful packets are passed
 - stateless packets dropped unconditionally
- Packets would have gotten dropped anyways
- Machine stays responsive

Firewall Redundancy

Firewall Redundancy

Components

- pfsync
 - State synchronisation
- CARP
 - Address failover

pfsync

- Each firewall sends out state changes via multicast
 - Inserts
 - Updates
 - Deletes
- States have a unique id
 - Incrementing counter and host id
- Best effort
 - Systems tend towards complete synchronisation
- Mechanisms to limit bandwidth/packets
 - Updates contain only changing state information
 - Multiple updates are merged into one

CARP

- Similar in some ways to VRRP
 - Multicast Advertisement
 - Address moved by moving a virtual MAC address
 - Multiple virtual addresses on same network
- Variable advertisement interval
 - most frequent advertiser becomes master
- Advertisement protected by a SHA1 HMAC
- Addresses not in Advertisement, but in HMAC
- Supports layer 2 load balancing (ARP based)
- IPv4 and IPv6 support

pfsync and CARP integration

- pfsync requests a bulk update when system comes up
- Prevents CARP preemption until bulk update complete

Example

Timeline

Load Balancing

- rdr / nat with multiple addresses
- CARP

rdr / nat with multiple addresses

- Several address selection options
 - bitmask
 - source-hash
 - random
 - round-robin
- sticky-address
 - Can be used with 'random' and 'round-robin'
 - Ties the source address to the translation address

CARP

- Can also provide failover to hosts as well as routers
- 'arpbalance' balances based on arp requests
 - Multiple carp groups (one per host)
 - Group selected based on ARP request source
 - Master of that group responds with ARP
 - Only works on local segment

Example

(Other) New stuff

- Recursive anchors
- More carp and pfsync integration
- probability
- **+++**

