DVCS or a new way to use Version Control Systems for
FreeBSD

Ollivier ROBERT
<roberto@FreeBSD.org>

11th May 2006

Abstract

FreeBSD, like many open source projects, uses CVS as its main version control system (VCS),
which is an extended history of all modifications made since the beginning of the project in 1993.
CVS is a cornerstone of FreeBSD in two ways: not only does it record the history of the project,
but it is a fundamental tool for coordinating the development of the FreeBSD operating system.

CVS is built around the concept of centralised repository, which has a number of limitations.

Recently, a new type of VCS has arisen: Distributed VCS, one of the first being BK from Bit-
Mover, Inc. Better known from the controversy it generated when Linus Torvalds started using it,
it has nonetheless changed the way some people develop software.

This paper explores the area of distributed VCS. We analyse two of them (Arch in its Bazaar[1]
incarnation and Mercurial[2] and try to show how such a tool could help further FreeBSD devel-
opment, both as a tool and as a new development process.

1 Introduction

FreeBSD[3] has been using CVS as its main ver-
sion control system (VCS) tool for as long as it ex-
ists and has now more than 10 years of history. A
few years ago, limitations inherent in CVS design
became too much to workaround and the project
begun using Perforce[4] for projects that needed
to change fast without “polluting” the main tree.

It works well but using two VCS instead of one
is making merges harder than it needs to be and
CVS limitations have become too much even for
the main tree itself. The separation of the reposi-
tory into 4 different ones helped but it is still com-
plicated.

After a bit of history, we will explore how we
could solve this problem.

2 A brief history of VCS

2.1 Ancestors

At the beginning, the main tools used to manage
different versions of software were pretty prim-
itive but it was enough for most people during
early stages of development and large pieces of
software were developed using SCCS or later,

RCS.

Both SCCS & RCS uses the same basic princi-
ples to handle changes with a special directory
in the working area, storing the files and the dif-
ferents revisions in a special format with a fun-
damental difference between the two: SCCS uses
a special format called "weave" (see [5]) whereas
RCS stores separate deltas: always storing the lat-
est revision and storing differences down to the
first one.

RCS assumes you will want a fast access to re-
visions close to what we will call the HEAD, the
latest checked-in revision in the main line of de-

velopment, the main inconvenience being that as
you add branches and tags, the backend storage
file gets more complicated and the system will
gradually slow down.

AT&T and CSRG at Berkeley both used SCCS
to manage whole versions of UNIX?™ and one
can find in many files the marker for SCCS!.
The what (1) command is used to "reveal" SCCS
strings in binaries. The author even used to em-
bed the SCCS marker inside RCS Id strings
to be able to use either what (1) or ident (1)
from RCS on such binaries.

Both SCCS and RCS use a "locking" model
where checkout means locking a file before being
able to modify it. This model essentially works
because it assumes that a given file will be mod-
ifed by only one person at some point in time.
It is pretty easy to see that it doesn’t scale espe-
cially with teams in different locations, as neither
of them support remote operations. That means
that sharing a tree can only be done using NFS or
an equivalent sharing file system.

What is actually interesting is that among the cur-
rently available VCS (distributed or not), most of
them use SCCS or RCS as the base for its design,
either by copying the User Interface (UI) — SVN
for example — or by extending it in different ways:

o Perforce uses the RCS file format with DB
files for metadata

¢ BK is more or less a rewrite of SCCS
to allow cloning of repositories/branches
(See the announce posted on the
linux-kernel list [6]).

There is another area where these venerable VCS
don’t work efficiently: binary file support. They
are fundamentaly designed to cope with text files
such as source code; binary files would be stored
as "text" with all the potential loss of information
and any command that tries to display or merge
would generate gibberish on the screen.

'The marker is @ (#) and the RCS equivalent is $Header$
NFS: Network File System

2.2 The Golden Age of CVS

In 1986, Dick Grune created CVS with two of his
students as a set of shell scripts over RCS in or-
der to be able to work on pieces of a compiler
independently[7]. His work was then rewritten
in C by Brian Berliner and a paper published in
1990 at USENIX Winter Technical Conference|[8].

At first, CVS didn’t have remote operations and
thus, to work on a given CVS tree, you would
have to be logged on a machine with "physical"
access to the tree (of course it could be through
NFS?).

The main advantages of CVS apart from being
free — a very useful feature in itself of course —
at that time were:

* A central repository instead of a collection
of small trees each with its own unsharable
RCS directory

A "no-locking" mode of operation, allowing
concurrent access to the repository through
extraction (also known as checkout) of a
subset of the tree in sandboxes — a pri-
vate workarea from which each developer
can commit his work regularely and merge
his/her modifications with others.

A central repository enables the use of cus-
tom scripts (for sending commit logs by
mail), access control lists and triggers.

For all these reasons and the fact that none others
existed, CVS became the VCS of choice for many
projects, both proprietary® and free ones like all
the BSDs*.

Soon, most if not all FOSS® began using CVS with
the notable exception of Linux, as the Linus Tor-
valds disliked CVS so much that he refused to
use an imperfect product6.

Then CVS gained remote operation support
(through either RSH, SSH or its own pserver
mode) and its adoption by SourceForge[9] and
similar projects repositories really pushed CVS in

*The author knows for a fact that the French telco company Alcatel has built its own VCS on top of CVS.
*All 4 of them, not counting TrustedBSD: FreeBSD, NetBSD, OpenBSD and more recently DragonflyBSD

SFOSS: Free and Open Source Software

*How he managed to not use a VCS for so long (1991 - 2000) keeps on baffling the author of the paper. ..

the open. The various bits of documentation
available first on FTP sites then on the WWW, the
books (see [10], [11] and [12]) and the simple but
effective UI of CVS also helped a lot to lower the
difficulty of using a VCS and thousands of peo-
ple began using it.

2.3 CVS flaws

Nowadays, many developers confess to stum-
bling on one or several misfeatures or design
problems with CVS. Its flaws are now very well-
known:

¢ Commits are not atomic (i.e. there is no con-
cept of a changeset), the granularity being
the directory: in a single directory, you get
consistency between the various impacted
files through a lock but if a given com-
mit spans multiple directories, you are on
your own: that’s why the various conver-
tion tools like Tailor[13] or cscvs® have
some difficulties finding all files in a given
changeset.

* You can not rename files and directories.
The only way to achieve that is either by
delete+add — which is very wrong and loses
history — or manually edit the repository to
copy or move the corresponding backend
file.

* CVS has no fine grained access control fa-
cilities and needs to rely on filesystem per-
missions for many things although heavy
users such as the FreeBSD project have de-
veloped customs wrappers and scripts to
add per-branch ACL, review workflow and
more.

¢ Directories are not versioned meaning that
permissions and ownership is not pre-
served or kept but also that you can not
have an empty directory. That’s not a major
inconvenient and people have been living
without it for a long time but it is desirable.

¢ Branches are cumbersome to use, especially
when you want to merge bits of this and
bits of that from another branch. As the
main entity versioned is the file and CVS
has no memory of branching, you have to
keep somewhere the exact revision for each
file to be merged or use tags and/or dates
to get this information.

® Third-party code integration and main-
tainance is very cumbersome’ as it is done
through a special branch called the vendor
branch.

The last two points are critical for projects such
as FreeBSD because we have to maintain parallel
branches for STABLE/CURRENT developement
and releases (and security branches). The weak
support for branches is also something that slows
down development in general. It makes work-
ing on specific sub-projects or features more com-
plicated. That’s why a few years ago, FreeBSD
made the choice of using a different VCS for such
cases: Perforce (see below).

Offline work is possible through CVSup (see be-
low) but it is still very limited.

2.4 Enter Subversion

To remove all these limitations, SVN was born.

SVN is often cited as the natural successor to CVS
and looking at it, it is easy to see why:

¢ Itis written by former CVS developers
e Itis touted as CV'S done right

* Resembling CVS as much as possible is one
of its primary goals (you can alias the cvs
command to svn and get running in no
time — ignoring the differences of course)

It has the same properties we all come to like in a
centralised VCS with many CVS flaws corrected:
atomic commits, easy and fast branching and tag-
ginglo, triggers, ACLs and all that. It has also its
own book [14] and the Pragmatic Programmers
have written one too [15].

’See http://en.wikipedia.org/wiki/Atomic_commit

8 A cvs-to-arch conversion tool. See http://wiki.gnuarch.org/cscvs

°The author is also maintainer for the ntp codebase integration in FreeBSD and suffers everytime it is time to upgrade. ...
't is even the same mechanism here, a tag is just a one time branch

You can even have a DVCS on top of that through
svk|[16].

So what are the problems with SVN?

If we ignore the centralised part (we will look at
these aspects in section 2.5), SVN has still some
important shortcomings (although it gets better
over time):

1. It is a big program, with some large de-
pendencies (like Apache2 to get a web
interface), apr & apr-util (both part
of Apache2). Apache2 is not mandatory
though, there are other ways to access a
given repository (svnserve and SSH are
available) and SVN ships with its own ver-
sion of libraries.

2. It used to require Berkeley DB as storage
backend for everything (strings contained
in the checked-in files, and so on) and expe-
rience has shown us that BDB usage in SVN
is not stable enough (and in the early days,
the DB schema was changing for almost
every release which was painful). Cur-
rent versions use FSFS as default storage
method.

3. The way branches and tags are imple-
mented, replication of a given repository
would generate copies of entire files on the
client (see below for an explanation)...

4. It is snapshot based as opposed to
changeset-based (See [17] for a very nice
description of both types of VCS) which
scale less than the latter ones.

5. In addition to the previous point, it has no
memory of what has been merged overtime

(like CVS).

While both the first and second ones make in-
tegration with FreeBSD rather difficult and the
third one surprises me (but is explained in [18]),

the last point is the worst one. It compli-
cates merging between branches and makes man-
aging third party code (found in for example
src/contrib in FreeBSD) more difficult.

SVK[16] could be a way to work around the
centralised design of SVN but as it does not
change the first and fourth problems and adds a
Perl layer to SVN, making integration even more
difficult although there are good things coming
fromSVK: it is faster and uses less disk space for
the working copy and SVK metadata. SVK ap-
parently is solving many of the main problems
with SVN (memory for example) but it should be
seen as an extended client, not a replacement.

However, when FreeBSD started to look at an-
other tool, SVN was not ready and Perforce was
choosen and we have been pretty happy with it;
it helped a lot getting projects such as SMPng and
others up and running (and finally integrated
into the main CVS tree of course). We also have a
regular export from the Perforce tree in a special
CVS tree to allow people to see what is going on
on these projects!!.

Perforce is a very nice centralised VCS (supports
fast and easy branches, is fast and well sup-
ported) but in that respect, it is even worse than
CVS: all operations are done through the net-
work and one has to be connected to the server to
do anything!2. Perforce is also snapshot-based,
see SVN point 4 above.

Another problem, as we will see in more details
through section 2.6, is that it is closed-source pro-
prietary software and that creates a questionable
dependency for an open source project.

One last bit of information about CVS: after
the last round of CVS security advisories, some
OpenBSD folks have decided to rewrite CVS
completely to get a more secure source code
base, see the OpenCVS website[19]. Some of
the enhancements planned a long time ago for
CVS like atomic commits and rename seem to
be forthcoming but it has not been released yet
(Oct. 2005).

"Note that it allows external people to get the code but does not give an easy way for them to hack on it and contribute

back.

2The author used to be a Perforce user for 5 years but the lack of easy synchronisation between repositories became too

much and he switched to Arch.

2.5 Enter the distributed VCS

In 1999-2000, Larry Mc Voy, formerly of Sun, Inc.,
started his own company called BitMover, Inc.
around a new product named BitKeeper. Bit-
Keeper (BK in short) was a distributed version
control system based on the venerable SCCS,
extending it to cope with repository cloning and
merging.

Apart from being close to its ancestor SCCS, it
brings the distributed aspect to revision control
and with it a whole new way of working and
sharing source code.

Up to now as we have seen earlier, developers
had to share code either through a common tree
(CVS, Perforce, and so on) or through the much
more cumbersome way of generating patches.
With BK it becomes as simple as cloning a given
repository and start hacking on it with pull/push
mechanisms to share code and patches.

With its vision of a repository is a branch, generat-
ing a branch is the same as cloning meaning that
you can have as many branches as you want and
that:

* They are cheap (so you can throw them
away if not needed anymore or a dead end),

e It is easy to merge between all these
branches as the system knows where
the branch was created from and which
changesets are present.

The concept is rather new and we should thank
McVoy for pushing the limits for all VCS devel-
opers because it was the starting point of what
we have now. BK really took the lead of DVCS
when Mc Voy, for good or worse, convinced Li-
nus Torvalds to finally start using a VCS for the
Linux kernel.

2.6 The BK debacle

It was a big change for Linus (not so much for
the developers’ community as many of them had
started using CVS for their own trees) and it also
pushed many people towards using a DVCS.

Many people recognise that BK works well, is
reasonably fast and it does the job'4. These peo-
ple also generally agree on two points:

¢ The license is one of the worst I've seen.
Not only there are many unacceptable re-
strictions (like being prevented to work on
developing any other VCS during the li-
cense validity plus one year and being for-
bidden to reverse engineer the wire proto-
col and product — something one can not
forbid in the EU) but if you wanted a "free"
license, you have to send all your commit
logs to them,

* Worse: all the generated metadata that
makes it interesting (like who branched
what and when and all that) is considered
as proprietary data by BitMover, Inc. even
though it concerns a FOSS project!'®

Add to these the fact that Mc Voy has constantly
been saying on several mailing-lists (mainly the
linux-kernel one) how difficult it was to write
such a product, how costly it would be and don’t
bother trying to reproduce it, it is too difficult and
so on'®.

To add insult to injury, he also said that if anyone
tried to reverse engineer anything related to BK,
he would change the wire protocol and prevent
people to do it.

In the end, what had to happen did: In April,
2005, Andrew "tridge" Tridgell, of Samba fame,
tried to reverse engineer the wire protocol —
which proved to be trivially easy thanks to BK
itself — and BitMover decided to revoke all "free"

3The author’s guess is that McVoy used it at Sun and felt it was a good starting point.
“The author tends to agree even though there are some questionable things in it like the 65536 limit on the number of

changeset — it is now fixed — and the heavy use of system (3

) throughout the binary.

>Note that this is very different from Perforce: both are proprietary software but the format of Perforce’s metadata is
known and there is even a Perl p5-vVCS module for it meaning that you are not locked by using Perforce.
161t is interesting to note that the development of Mercurial started in March 2005 and is now pretty close to BK feature-

wise in only six months.

17 As it is, BitMover is still trying to stiffle the competition by forcing people not to work on free projects; a major con-
tributor to Mercurial has been recently "asked" not to work on it as long as his company has a commercial BK license.

licenses therefore putting Linus and other Linux

developers in a difficult position!”.

I will not dive into Linux politics and what hap-
pened but we must see that the whole debacle
was the driving force behind the current trend
of DVCS and spurred development of many sys-
tems now available.

People are now aware of the problems and
caveats of distributed developement and the so-
lutions behind them. We now have several
very interesting VCS, some close to Linus” own
git[20] (cogito[21] and in some ways Mercu-
rial) and many others, each with its own set
of interesting features (Darcs and the theory of
patches[22], Monotone[23], and so on).

The second consequence is that people are hope-
fully convinced that using a proprietary VCS as
the main one is a very bad idea.

3 The FreeBSD context:
and processes

figures

The FreeBSD project started in 1993 just after
NetBSD using 386BSD as its base tree. Origi-
nally planning to be 386BSD 0.1.5, it finally be-
came FreeBSD as both Bill and Lynne Jolitz, the
original authors, refused contributions and main-
taining the various patches became too cumber-

some.!8

3.1 Figures

The current CVS tree is the second one we have
been maintaining. Due to legal restrictions com-
ing from the AT&T/BSDi/CSRG lawsuit, we
were forbidden to keep on using and distributing
the FreeBSD 1.x repository so a whole new tree
was created in 1994 with the import of 4.4BSD-
lite.

The whole repository was broken up into four a
few years ago to be close to the organisation of
committers: we have src, ports, doc committers
and those who can commit in several or all cat-
egories. The doc committers includes those work-

ing on the www subtree. The following table lists
the sizes as of mid-Sept. 2005:

Repository | Size (MB) Directories Files
doc 183 1653 6171
ports 903 43490 124338
src 1402 9030 60708
www 112 595 3479

I do not have figures about the number of change-
sets as the notion doesn’t exist in CVS but when
P. Wemm did some conversion tests back in 2000
during our evaluation of Perforce, we were al-
ready at more than 75000 changes in the Perforce
converted tree. I estimate the current tree to have
more than 200,000 - 220,000 changesets by now,
all repositories considered (more on these figures
below in 6.2). .

When using CVSup'?, all the repositories can be
combined in a single one through symlinks as it
is easier to work with. Note that of course, hav-
ing the entire repository does not allow to com-
mit (or it would completely mess up with the next
CVSup run). One feature was added to CVSup to
ignore a special branch and allow for local mod-
ifications while syncing the CVS tree but that is
only a hack.

3.2 Development process

Today, the developement process in FreeBSD is
pretty straightforward: committers have access
to all repositories, the main difference between
types of committers will reflect in the commit log.
If a doc committer checks in a change in a man-
page in src/share/man, the commit message
will say at the top that it was done by a doc com-
mitter.

Committers are strongly advised to CVSup the
repository on their local machines, edit, compile
and test and then push to the real one by overrid-
ing the repository path. That way, the network
and the CVS machine are not overloaded and
we can keep disk space at a reasonnable level.
Of course when a commit must be tested on the
FreeBSD cluster with different machines and ar-
chitectures and the committer doesn’t have the
local resources, local checkouts are allowed.

8The complete history of FreeBSD and its relation to the other BSD can be found on the web, I will not reproduce it

here.

¥CVSup: CVS-aware replication tool — http: //www.cvsup.org/

The central repositories are also responsible for
sending the commit logs to the various mailing-
lists (cvs-all has everything but there are
also broken down for specific subtrees such as
cvs-ports and doc); this is an important part of
the process so any system aiming to replace CVS
must be able to offer and support such features.

In day-to-day operations, we see CVS’s flaws in
action when we need to move things around (it
can be because a port was not imported in the
right place or in case of code reorganisation);
we have some people called CVSmeisters that are
specifically allowed to manipulate the repository
and execute the unfortunately common repocopy
operation?’. That way, history is not lost.

It is unfortunate that we have to manually edit
the repository fairly often?! but there is no other
way due to CVS’s limitations.

The two products we are going to evaluate have
ways of replicating a given repository to remote
sites but we will keep on exporting all changesets
in a CVS repository for easy duplication through
CVSup, anonymous CVS usage and more gener-
ally because it is so well-known even by some
non-technical people. The nice thing is that con-
verters to CVS are not difficult to implement or
find and it is easier to go from a changeset-based
system to CVS than the reverse.

3.3 Release Engineering

The FreeBSD project maintains several branches
in parallel to support our notions of STABLE and
CURRENT trees. We also have security branches
on which only security fixes are applied (this
happen to all STABLE versions after they have
been released) and they are supported for a lim-
ited amount of time (that varies from branch to
branch and can be more than 18 months). We
have also recently allowed non security fixes in
the release branches (RELENG_x). To help re-
lease builds, we have some period of time dur-
ing which the trees are either completely frozen
or strictly controlled by the Release Engineering
team (also known as the re@ alias) and portmgr
(for the ports tree).

Such freezes happen independently in the src, doc
and ports trees but the goal stays the same: to be
able to have a stable tree to cut a release from.

These procedures are somewhat of a necessary
pain because CVS is not as we’ve said before very
helpful with its branch handling (sometimes the
trees stay semi-frozen for weeks). This is one of
the main reasons not to branch the entire ports
tree for each release: It would be taking too much
time to tag the tree as every single file needs to
be written into and we need to block everyone
through various scripts we have developed over

CVS.

Switching to another VCS requires these issues to
be cleanly handled.

3.4 FreeBSD requirements

From the previous sections, we can extract a set
of FreeBSD requirements that we want a future
tool to handle.

¢ Atomic commits to get real changesets

¢ Easy & cheap branches (and merging) and
tags to enable parallel lines of development
(that is essential for projects like SMPng
which have a very big impact on many
source files)

¢ Fast system for common operations

* Ability to keep and distribute a "reference"
tree, knowing that it should also be ex-
ported to CVS

¢ Ability to rename files within directories
without losing history

* Ability to help simplify the way we handle
releases (and freezes, slushes, ...) in order
to avoid locking the trees.

* Ability to digitally sign revisions or reposi-
tories to avoid file corruption and to detect
unwanted modifications

¢ Automated or mechanically assisted merg-
ing

1t is achieved by cp the foo, v file from the old place to the new one.
210n the other hand, manually editing is faisible, which can save your day if you have a repository corruption.

* Ability to work offline — like on a plane
— without requiring too much work: not
only being able to list differences but also
to commit

Most of these requirements can be met by cen-
tralised VCS but the second and last points are
those pointing to a non-centralised or distributed

VCS.

4 Ts Arch/bazaar suited to

FreeBSD?

In this section, Arch is the "protocol" (for lack
of a better word) designed by Tom Lord and
both tla[24] and Bazaar are implementions of
this protocol. Both implementions are compati-
ble with each others (unless you specifically ask
at creation-time for a baz archive which t1a can
not read) but Bazaar has the backing of a com-
pany (Canonical, Ltd.[25]) and is the only one
currently maintained. Tom Lord has announced
he was stopping all developments on both tla and
revc?.

Arch has some unique features among the DVCS:

e Itis both a VCS and a cataloging system:

Everything is divided into archives,
whose name generally contains the
email address of the developer like in
lord@emf.net-—gnu—-arch-2004.

Archives contain the equivalent to CVS
modules named here categories. Whereas
most DVCS use as many repositories as you
have branches, Arch still uses a separate
sandbox as workarea.

Categories are the main work unit in
Arch; they can be checked out for edit-
ing, branched (here it means both as a lo-
cal branch and as a remote one) and ver-
sioned. Branches and versions are specified

22

in the full name of the category, separated
by “~-"like in calife--pam--3.0

The main inconvenience is that you must
type a lot more to refer to something man-
aged by Arch®

Whereas many modern VCS try to dupli-
cate the well known UI of CVS, tla has
a lot (and I really mean a lot) of different
commands for dealing with archives, cat-
egories, revision libraries, branching and
merging and so on. Bazaar has tried to re-
design the UI to be easier for beginners but
still, the output of baz help | wc -1
shows 187 lines. ..

Both tla and Bazaar use weird-looking file-
names for temporary subtrees and file-
names (with ++ or ,, as prefix). The meta-
data directory in the sandbox is named
{arch}. Most VCS use . something (and
_darcs for Darcs[26]) to store that infor-
mation. That is not a big point but it does
confuse newcomers.

Arch eats a lot of diskspace. In addition
to the archive which contains directories
of changesets, you will need space for the
checked out categories and either a “pris-
tine” copy of the sandbox (a gzipped-tar
file) inside {arch} or a revision library (a
complete tree of hardlinked files for most or
all checked out/merged revisions).?*

Arch needs to uniquely identify all files
managed by it so there are several ways to
generate a unique id and to tell Arch what it
is:

names The filename is the id itself, it is ob-
viously not the recommended way for
normal operations

explicit It is analogous to how CVS works,
you use the add command to baz to
attach an id to the file®

revc was supposed to be Arch 2.0 with a whole new storage backend (close to git), no more cate-

gories/branches/versions and a different archive format along with an heavy use of SHA-1 checksums everywhere.
23Fortunately, there are completion modules available for the common shells — zsh, bash and tcsh. Trust me, you can

not live without such a completion module.

2To be fair with Arch, SVN has also a pristine copy of your files inside . svn.

It will be stored in a special sub-directory called .arch-ids.

tagline This one is special: Arch will look
into the first and last 1 KB of each file
for a special string®® and use that as
unique id.

This unique id enables Arch to track
file/directories renames more or less auto-
matically (which is nice) but also, in the
tagline case, complicates third parties code
as you are not really allowed to modify it.

All of these items makes Arch rather compli-
cated to use, especially for beginners (in the VCS
world) but really, I have been very happy with it
for two years. I would even say that the names-
pace issue for categories forces users to think a
bit more on how to organise things in an archive
which is not without value.

If we want to use it for FreeBSD, there
are several things that we need to look at,
mainly because of the design of Arch and
the whole category feature. Do we want
a single category named freebsd, separated
into branches (like freebsd-current and
freebsd-stable) eventually with a version
number or do we want to use a category per sub-
tree?

This is a big point and one that will have an im-
portant impact on Arch speed because it tends to
walk the whole tree several times during commit
and other operations (that is called running an
"inventory" in Arch-speak). A given category is
pretty much independent, if you want to group
categories to form a complete source tree, you
have to use a special mechanism called configs:
you have a category with a special file with all
the other categories you want to include (pretty
much like the CVSROOT /modules does for CVS.)
Then you use the build-config command to
extract all categories and create the tree.

The big problem that comes from configs usage
is that as I said before, the work unit is the cate-
gory. What it implies is that commit also works
on categories, not on a source tree built with con-
figs... Arch has a way to iterate on all categories
coming from a config but:

2

%< comment characters>arch-tag:

<unique-tag>

¢ It is a bit cumbersome although you will
end up with writing a lot of aliases or shell
scripts to automate this,

¢ The changeset is not global either: you will
have one commit per category.

The second point is pretty much a killer in my
mind. If you want to do a sweeping change in
/usr/ports for example, you want a changeset
of the whole thing, not more than 12000 change-
sets... You also don’t want 12000 mails to be sent
to the cvs—-all mailing-list.

Another subtle characteristic of Arch: when
merging multiple changesets between archives,
on the receiving end, there will be only
one changeset incorporating all the changesets
(named patch logs in Arch) and users will be able
to see only the summary lines for each embedded
changeset. If the sending archive is available, full
commit messages can be retrieved of course. This
is clearly different from BK and Mercurial where
every remote changeset is included as-is.

Bazaar satisfies one of our requirements: every
commit can be digitally signed with PGP/GPG,
this is an important security feature.

Last but not least: Bazaar is rather complicated
to build; it does not use the autoconf system
but its own home-built system (called package-
framework) and has dependencies on several ex-
ternal packages such as gpgme, 1ibgpg-error,
neon (for http/webdav access) and very re-
cent versions of various GNU utilities (patch,
diffutils). It does complicate its possible in-
clusion in the main FreeBSD tree. tla is not
as complicated — although it does use package-
framework as well —but tla should now be consid-
ered as dead (and probably not worth maintain-
ing due to the above limitations).

4.1 Common operations

We will take /usr/src? to make most of our
tests, knowing that it is a moderately large tree
(checkout is around 448 MB) with more than
33000 files inside 3766 directories. ..

(people often use UUID[27] for that purpose:

/* arch-tag: bl1c0274-29ee-11da-9b43-000d93c89990 */)
*The main problem is that Bazaar 1.5 keeps on dumping core on my FreeBSD 4.11 system when using /usr/ports

In order to avoid wasting too much disk space
among developers, each of them having possibly
several checkout copies lying around, we can de-
fine a revision library. This area will hold hard-
linked copies of the checkout files and so only the
modified files will take more space between all
users. Of course it does eat space (but we hope
to reduce the overall diskspace requirement) and
all developers must configure their text editor to
break hard-links to avoid corrupting this revision
library.

At first, we will try to import that as a single cat-
egory because we want changesets to span the
whole tree. To have Bazaar work as transpar-
ently as possible, we will use the names tagging
method.

Operation Time | CVS equiv. Time
baz import 11:21 | cvs import 4:18
baz get src 3:28 | cvs co 14:43
baz commit -s 429 | cvs commit 11:52
baz status 6:05 | cvs update 5:22
baz status 3:33 | cvs update idem
NOTES:

¢ The first baz status command generated a revi-
sion library entry while the second one is just using
it.

® The baz get command used the revision library to
hardlink all files in it.

e For some operations, system limits (see
get/setrlimit (2)) had to be raised (datasize in
particular) or baz would dump core.

Bazaar is clearly faster than CVS but not by a
large margin and some operations require mul-
tiple traversal of the whole tree (the inventory
system) which slows it down. commit can take
an optional list of file names to be considered by
the commit itself but on a very large tree such as
/usr/ports it is really painful to list all modi-
tied files. The correct method is generally to have
a wrapper command around the actual command-
line interface (CLI) that builds this list and hands
it out to the tool when committing.

Disk space requirements must also be considered:
If a given tree is N MB, it will generate N MB
as a revision library entry and gzip(N) MB in

the archive itself. Commits are stored as com-
pressed changesets so it takes much less space.
For each commit, a plain text version of all mod-
ified files will be added in the next revision li-
brary entry and the rest is hardlinked. Revision
libraries must be pruned regularly of course as
you’ll accumulate revisions you'll probably never
extract gain.

The alternative is to avoid using a revision library
but then, Bazaar will generate a complete copy of
the checkout files — called a pristine tree — below
{arch} which does take as much disk space as
the checkout tree...

4.2 NOTE

It must be noted that most of Canonical’s ef-
fort has been recently concentrated on the next
generation of bazaar: bzr aka bazaar-ng aka
bazaar 2. Version 0.1 of bz r has just been released
(Oct., 11th, 2005), incorporating a very important
change in repository format: it is now using the
weave®® format instead of the full-text one previ-
ously used (the same as git). It is too early to
really test bzr as it is pretty young and perfor-
mance is still lacking but it is very promising.

This is an important change and one that will
make Bazaar 2 much more interesting. There will
be an upgrade path from Bazaar 1 to Bazaar 2 but
they are completely different in design

5 Mercurial to the rescue

While working with Arch and trying to see how
to overcome the limitations and design problems
described in 4, I found Mercurial. Following
what we have seen in section 2.6 and the appear-
ance of Linus” git, exploring what have been
started with Darcs and Monotone, Matt Mackall
announced he had started to write a DVCS[28]%.

Another reason to look at Mercurial is that
Bazaar 2 was far from being feature-complete
(without even thinking about performance)

BGee http://bazaar.canonical .com/BzrileaveFormat for a detailed explanation about weaves.
PMercurial was started because of the BK debacle according to the author.
9See the roadmap: http://www.selenic.com/mercurial/wiki/index.cgi/RoadMap

What is really nice about Mercurial is not so much
its speed — although it is important and impres-
sive — but the fact that in a few months, it has
grown into a nearly-mature product, with almost
all features you could ask for a DVCS®.

Add to that:

¢ A very friendly and open-minded author

¢ A growing community both on the mailing
list*! and on IRC (#mercurial on the Freen-
ode®? network).

¢ A relatively small and portable system
compared to others like Monotone or
Arx[29]

* Written in Python® without too many ex-
ternal dependencies

You end up with something small, fast and easy
to use and setup. As we will see in the timing sec-
tion 5.2, its handling of large trees is adequate for
most usage and it is evolving without breaking
too many things from one version to the next (no
repository format change is foreseen in the near
future for example, something that other VCS
have done on a regular basis).

Of course there are a few things that need to be
implemented to have a complete system like:

¢ Better handling of binary files. You can put
binaries in a Mercurial repo but you will not
be able to use hg export to submit; the
only way to do it is either to use the bundle
command that create a binary version of a
set of changesets or to use the push/pull
mechanism.

* Better rename/move support. At the
moment, history is preserved by the
copy/rename operations but it is not
available to the user so it appears to be
lost?*

¢ Better support for managing changesets
within a repo: currently, there are differ-
ent way to revert a changeset or a set of
changesets (undo only reverts the last one).
It means that if you make a mistake, it may
become a bit difficult to undo it.

* Support for digital signature of commits
(most of the infrastructure is there but
needs to be completed and on by default).
UPDATE: the gpg extention has been inte-
grated in the main Mercurial tree and just
need to be enabled in hgrc (5).

¢ Full permissions are not versioned except
for the 'x” bit. Permissions are kept but if
you change a file from 600 to 664, it will
not be not taken into account.

¢ Lack of Internationalisation (i18n) support.
It is necessary to lower the entry bar for
many people.

¢ More documentation

All these should be corrected for the 1.0 release
during 2006.

All these reasons made the author choose Mer-
curial first for his own usage and second to in-
clude it in the scope of this paper. The rather
fundamental technical differences between Arch
and Mercurial designs do not have a big impact
on section 6 about processes and policies changes
that are needed when moving from a centralised
to a distributed VCS. These differences will have
an impact on the technical side of the migration
and setup of course.

Apparently the folks managing OpenSolaris
didn’t find these flaws blocking enough and
choose Mercurial over Bazaar-NG and Git after
careful evaluation in March 2006 3°)

These main differences between Mercurial and
Arch are:

$'Mailman interface: http://www.selenic.com/mailman/listinfo/mercurial/

32Gee http://www.freenode.net/

*While Python is not the preferred language of the author of this paper, it is easy to understand and thus to contribute

[to the project]

34This is true as of version 0.8.1 released on April, 7th, 2006

3‘L—’http: //www.opensolaris.org/Jjive/thread. jspa?threadID=7611l&tstart=0

e Arch follows the traditional design with
one side the archive/repository and on the
other side the working trees/sandboxes

* Mercurial does not
cific namespace on
module naming (like

force a spe-
repository and
Arch does in

It has also an interesting technical feature, shared
in principle by Arch, the various files in the .hg
tree are append-only. That means that it is a bit
more robust (compared to the RCS file format
where everything including tags are stored in a
single , v file) and that going back to a previous
revision is done through simply truncating the

archive/category——branch——version)ﬁle

e In Mercurial, there is no inven-
tory like the one done in Arch, no
tagline/explicit/implicit/names method of
include/exclude files from being versioned.

¢ The work unit is the tree /branch, not a sub-
set of it

5.1 Technical specifications

Mercurial shares some common characteristics
with the other available DVCS:

* A repository is a branch (this is a simpli-
fication as you can have several branches
within a given repository)

¢ The working directory is the repository,
there is no sandbox like in CVS or SVN

* Branches are cheap and the main way to
replicate (called cloning) repositories

* You can lay down tags on a given revision
but with a twist: tags can be either local or
global, the latter means that if you clone a
repository, you will get the tags along the
way.

* You must have a merging tool like kdiff3
or tkdiff to handle any conflict during
merging. It must be noted that merging is
done on a separate branch within the repos-
itory first then you merge the result with
your own local changes. This approach
generally lowers the number of conflicts
when dealing with external sources.

¢ It has an integrated CVSweb-like interface,
either through a CGI script or through its
own hg serve command.

%nttp://savannah.nongnu.org/projects/quilt

The storage method used seems to be pretty ef-
ficient, specially when compared to the default
git backend where full files are stored for a
given revision and various tests done by the au-
thor ([30] for example) shows the differences. I do
not believe that the fact that hard disks are now
cheap is a good reason to waste that space.

Something interesting has been available for Mer-
curial for quite some time: an extention to man-
age "stacks" of patches has been written. This
extention, called mg does something similar to
qui1t3%;itallow to manage a series of patches by
keeping track of the changes each patch makes.
Patches can be applied, un-applied, refreshed,
etc.

UPDATE: mqg has been integrated post-0.8 and is
now bundled with Mercurial. You just need to en-
able in hgrc (5).

5.2 Tests timing

We take the same /usr/src tree to make com-
parisons with Arch and CVS.

Let’s assume we want to put /usr/src under
Hg, discarding the previous CVS history for the
moment”

Operation Time | CVS equiv. Time
hg clone src 3:09 | cvs co 14:43
hg commit -A 512 | cvs import 4:18+14:43
hg commit -m 0:09 | cvs commit 5:32
hg status 0:06 | cvs update 3:30
NOTES:

* clone and co don’t do the same exact thing as there
is no history in co case.

* cvs import creates the repository but we need a
checkout to work; Mercurial doesn’t need that phase
as the working directory is the repository.

*Due to CVS design and misconception, converting a whole tree is rather complicated and very slow.

* cvs update is not strictly equivalent to hg
status but status is much more verbose.
It is very fast. It is fast enough that we don'’t re-
ally care about trying to use sub-trees (see 6.1) as
it gets more complicated to submit patches.

As Mercurial can handle the /usr/ports tree,
here are some timings:

Operation Time | CVS equiv. Time
hg clone ports 918 | cvs co 16:35
hg commit -A 10:34 | cvs import 4:41+16:35
hg commit -m 0:39 | cvs commit 11:52
hg status 0:52 | cvs update 5:22

Even on a much larger tree — /usr/ports is
more than 124,000 files in more than 32300 direc-
tories — Mercurial manages to stay fast.

Repository overhead is small too, although on
pathologic cases such as /usr/ports with a lot
of very small files, the fact that you have two files
for each versioned files is showing:

Tree Size .hg size
/usr/src 417MB 227 MB
/usr/ports | 430 MB 358 MB

The nice thing is that as the trees will accumulate
revisions, the way Mercurial does store change-
sets is very efficient: if the delta between the
next version and the original is bigger than some
amount, the new version is stored compressed in
its entirety. It ensures than we don’t need a huge
amount of data to reconstruct any version of a
given file. Add to that the fact that all files be-
low .hg are append-only, you have a repository
that can resist corruption better than others.

The author of this paper would have liked to do
more speed comparisons, especially when work-
ing with older branches (an area where CVS is
rather weak as it needs to go back and forth with
in the repository to reconstruct a branch) but the
difficulties with repository conversion prevented
that. The author would like to point out that due
to its design, Mercurial would probably shine in
that respect because generating an older branch
is consist of merely cloning (something which is
fast) the given reference tree...

Since my talk at EuroBSDCon 2005 in November,
Chris Mason has been working on some very in-
teresting bits for Mercurial: using revlogng as
a starting point, he has written a new repository
format that does pack all files within a directory
into a single revlog file. Although it currently has
some bad side-effects®, it has some benefits in
terms of disk space and clone times.

After Matt Mackall mentioned this issues, he sug-
gested another modification whereas a file will be
packed if the size of the data + index is below a
reasonable threshold (128 KB for now) and un-
packed otherwise. This approach will greatly re-
duce the repo size because in /usr/ports most
files don’t have a big history.

On a dual P4/2.8 GHz machine (with HTT so it
sees 4 CPUs) with fast SCSI U320 disks in mirror

mode, I get the following figures*’:
Repo format .hgsize Files Directories
default 793648 269929 27565
revlogng/mixed 527352 134986 27566
revlogng/packed | 398002 55111 27565

clone times are also down from 25 to 19 minutes
(which is 20% less). For mixed mode, clone time
is 21 mn, close to the fully packed version. The
mixed packed case seems to be a good compro-
mise there.

6 How to get this to work: pro-
cesses and policies

A tool, however powerful, is not enough to sup-
port a whole project running and do it that way in
a reasonable form, especially when dealing with
volunteers. A project this size (more than 300
people, working around the world with different
timezones) has to have some kind of processes
and policies.

Since the beginning of the FreeBSD project, ev-
erything has been built upon CVS and upon its
features and flaws. In particular, almost all the
constraints we have now for Release Engineering
and the whole set of policies of freezes, slushes

BGee http://www.selenic.com/mercurial/wiki/index.cgi/Rev1ogNG for a possible modification to the present reposi—

tory format

39588 http://www.selenic.com/pipermail/mercurial/2006-March/007155.html
“0The difference in size for . hg are due to difference in file-system characterisrics between the two machines used for

testing

and al. have their roots in CVS in one way or an-
other.

It is the opinion of the author of this paper that
it is time to review them, classify them as CVS-
specific (or not) and see how they would have
to evolve if the FreeBSD project was to switch its
VCS over to Mercurial!.

A distributed or decentralised VCS enables a
more parallel way of working, facilitates work-
ing in different trees and branches without the
fear of a complicated merge and without playing
with patches. The fact that it enables offline work
is a very much needed feature; likewise, merg-
ing from offline trees is no different from merging
different branches and is as easy.

We should also note that some software would
have to be written or changed to adapt to the new
VCS as some assumptions coming from a CVS-
oriented world are not true anymore: a central
server with all the related aspects like pre-commit
checks, post-commit triggers and so on.

6.1 FreeBSD environment

If we look at the FreeBSD requirements in 3.4 and
try to answer them, we will see that the first three
are easily met by Mercurial as they are part of its
design. The last one is the key point what we will
concentrate on. The point here is not to disturb
the developers too much.

Let’s see what would be needed to reproduce a
CVS-like environment:

* A 'reference" tree that people can clone
from just like people use CVSup now to get
the official source tree.

¢ A way to handle either merge requests from
the various developers or a way to queue
patches sent through various sources (email
for example) for integration in the "refer-

ence" trees aka a patch queue manager®2.

* A way to generate commit messages to be
sent to various mailing-lists; if we have

the above request satisfied, then the patch
queue manager (PQM) is the obvious can-
didate for this.

When one wants to make some modifications to a
given tree, he/she will clone the repository, hack
on it and then submit the changesets to the PQM.
One easy way to do this is to have a cloned tree
that is only updated through hg pull, serving
as a local reference tree and the developer will
clone this one at will for specific purposes.

To maintain coherency with these cloned trees,
he/she will regularely merge from this reference
tree into the other ones. This is where having
a fast VCS is interesting because having to wait
half an hour just to be able to edit something is
not really productive.

Even though Mercurial is fast for cloning big
trees, it still takes some time. A possible solu-
tion to this problem could be to create sub-trees
on demand: when you want to do a small modi-
fication, you just go to the sub-tree, hg init fol-
lowed by hg commit -A to import the sub-tree
in a little repository. It is then very fast and easy
to generate a diff and submit it to the main tree
(then forget the sub-tree with rm -rf .hg). Of
course, it would be for small modifications which
don’t require you to keep the repository.

As for the patch queue manager, PQM has al-
ready been modified to work with Bazaar 2 and
ArX so I think that adding Mercurial support
should not be too difficult.

One area where things become easier is Release
Management: there is no real technical need for
ports/src freezes/slushes as it is just a mat-
ter of cloning the "reference" repository into a
branch/release one, making it available through
the POM and use different rules for merging.
Freezes will always happen in order to get the
tree stabilised up to the point we can cut the re-
lease out of it of course.

Likewise, there is no need to manually edit the
repository, no more repocopies or tag sliding*3,

*'Note that most of what we will say there is applicable to any distributed VCS, the key here is distributed.
4ﬁJketheoneusaibyChnonKaL—http://mirrors.sourcecontrol.net/

robert.collins@canonical.com-general/

#Tags are static in CVS and references a specific file revision. When preparing a release, a critical bug can be fixed and
the release/branch tag be modified to reference the fixed revision. This is manual intervention in the repository.

thus simplifying the whole repository adminis-
tration.

6.2 Repository conversion

The problem of converting the history of the
project is a complicated one as the tools we are
coming from and the one we would use are com-
pletely different in several ways, the major one
being that having a repository for each branch
complicates conversion as the tool used for that
should be aware of branches and should gener-
ate a different repository when it comes across a
branch tag. At the moment, none of the avail-
able tools support that. Tailor can convert whole
branches into a given repository but we would
have to manually do it for each branch starting at
the branch point. It can only follow a given path,
not descend in other branches.

Other complicating factors includes encoding of
commit messages (do you want to convert every-
thing from ASCII or ISO into UTF-8 or UTF-16?),
tags (the notion of tags varies betweeen VCS, ...

To give everybody an idea of what repository
conversion is about, the /usr/ports tree al-
ready mentioned has 138696 changesets (mid-
October 2005) which is a lot. /usr/src isaround
117233 changesets. Last time the author tried to
convert /usr/src, it took 3 hours for less than
700 changesets (estimating the total time is left as
an exercise for the reader) and consumed close to
1.2 GB of memory.

A few weeks after EuroBSDCon 2005, a new
tool for converting CVS repositories into Mer-
curial ones has been written by a DragonflyBSD
committer: Simon "corecode" Schubert called
cvs20hg. It is also in python but has been op-
timised for fast operations. It has an incremen-
tal running mode meaning that it can be used
for a continuous conversion, updating regularely
a given CVS repository. Such a gateway has
been implemented on http://hg.fr.freebsd.org
by Mathieu Arnold, a FreeBSD committer. Up-
dated every two hours approximatively, it gives
a changeset-based view of all the repositories.

44http: //selenic.com/mercurial/bugs/

The only remaining problem is branches of
course. cvs20hg does not support branches ei-
ther so only HEAD is available for src. Tags are
not supported either but the way they are used in
CVS makes the conversion a bit difficult: tags in
Mercurial are global whereas they can cover only
partial trees in CVS. Most of the tags in the tree
were made for branch points or releases.

As one last update to this paper, one of our very
own FreeBSD committers, Pierre Beyssac, has
just added branch support to cvs20hg and we
are now able to get RELENG_6 sources in their
own Mercurial repository.

It seems that git now has a working converter
that does understand branches and an entry has
been put in Mercurial Bug Tracking System®*
about that.

7 Conclusions

It is clear for the author that such a migration
should be carefully planned over a few months
and that the different issues mentioned before
should be fixed. Mercurial itself is still lacking
features but is evolving quite fast. Other tools
were outside the scope of this paper and maybe
should be evaluated but at the moment, only
Mercurial has enough features and is stable and
fast enough for our purposes.

The infrastructure still needs to be written or
adapted to Mercurial and the big question on how
to import the previous CVS history is something
that should worked upon.

The problem with the repository conversion tools
may mean that we would have to maintain both
CVS and Mercurial as long as we support older
branches or finding a way to partially convert
them.

A not-so-minor point to consider: Mercurial is
not written in a language that we have in core
FreeBSD so the question becomes do we want
Python in the core OS or can we accept that our
main VCS will force people to install Python from
ports. From a pure maintainability point of view,
ports is easier.*®

#Tcl and Perl were both at some point in time part of core FreeBSD and they were both removed.

The learning curve of the new tool and the new
ways of working are also important. The Ul is a
big part of that and Mercurial tries to mimic the
old but well-known CVS one (where applicable
of course).

Meanwhile, there are some advantages coming
from the distributed part of the new tool:

* There is no need to have such complicated
pre-commit and post-commit tools such as
the ones we have now in CVSROOT, the
POM will manage all that.

* You don’t need a central server with SSH
keys, Kerberos or any form of access con-
trol; people just clone the "reference" reposi-
tory and work from that. Access will still be
needed at the PQM level of course to distin-
guish between committers, developers and
users.

* The new capabilities of Mercurial could
open the way to new working-styles like
task-oriented branching and merging (like
we do in Perforce now). With a possible
link to the bug report database, we could
think having a PR automatically closed
when a task is done.

It is the wish of the author of this paper to help
the FreeBSD Project to start thinking about a pos-
sible switch. It will be up to the FreeBSD Project
to decide whether this is a worthwhile project to
engage ourselves into of course.

Discussions about VCS and their use with the
FreeBSD Project happen regularely in various
mailing-lists. It seems that SVN, especially with
SVK has quite a significant number of support-
ers. Knowing the pain of converting our signif-
icant history, the author can understand why al-
though he still thinks a DVCS would be better in
the long term. These discussions show that the
above wish of pushing people into thinking of a
switch has been achieved at least.

8 Thanks

The author would like to thank Phil Regnauld,
Mark Murray, Anton Berezin and Robert Watson

for reviewing this paper over a rather short pe-
riod of time. Much appreciated folks!.

Thanks also to Mathieu Arnold & Absolight for
setting up the Mercurial repository and conver-
sion crontabs on hg. fr. freebsd.org.

And special thanks to Elodie for pushing me into
writing this paper.

References
[1] Various authors at Canonical, Inc.,
Bazaar, an Arch implementation.

http://bazaar.canonical.com/.

[2] Matt Mackall, Mercurial, a distributed SCM.

http://selenic.com/mercurial/.

[3] The FreeBSD Project, FreeBSD, The Power to
Serve. http://www.FreeBSD.org/.

[4] Inc.
ware

Perforce, Perforce, The Fast Soft-
Configuration ~Management System.
http://perforce.com/.

[5] Mark J. Rochkind. The source code control
system. In IEEE Transactions on Software En-
gineering (Vol. SE-1, no. 4), December 1975.

[6] Larry McVoy, SCCS & Source mgmt. 1997.
http://1lkml.org/1lkml1/1997/5/23/105

[7] Dick Grune, Concurrent Versions System CVS.
1986. nttp://www.cs.vu.nl/dick/
CVS.html#History.

[8] Brian Berliner. CVSII: Parallelizing software
development. In Proceedings of the USENIX
Winter 1990 Technical Conference, pages 341-

352, Berkeley, CA, 1990. USENIX Associa-

tion.
[9] Sourceforge team, Sourceforge soft-
ware development hosting system.

http://www.sourceforge.net/.

[10] Karl Fogel and Moshe Bar. Open Source De-
velopment with CVS. Number 1-932111-81-6

in ISBN. Paraglyph Press.

Andy Hunt Dave Thomas. Pragmatic Version
Control Using CVS. Number 0974514004 in
ISBN. Pragmatic Programmers, 2003.

[12]

(13]

[16]

[17]

Per Cederqvist, Version ~ Manage-
ment with CVS (‘official’ manual).
http://ximbiot.com/cvs/manual/.

Lele Gaifax, Tailorpy, A tool to
migrate changesets between VCS.

http://www.darcs.net/DarcsWiki/Tailor.

C. Michael Pilato Ben Collins-Sussman,
Brian W. Fitzpatrick. Version Control with
Subversion. Number 0-596-00448-6 in ISBN.
O'Reilly, 2004.

Mike Mason. Pragmatic Version Control using
Subversion. Number 0-9745140-6-3 in ISBN.
Pragmatic Programmers, 2005.

ChiaLiangKao,
sion control

a decentralized ver-
using Subversion.

svk,
system,
http://svk.elixus.org/.

Martin Pool, Integrals and derivatives. July
2004. http://sourcefrog.net/weblog/

software/vc/derivatives.html.

C. Watson B. Robinson,]J. Hess
and ISHIKAWA Mutsumi, De-
bian X Strike Force Hackers’ Guide.

http://necrotic.deadbeast.net/xsf/
XFree86/HACKING. txt.

OpenBSD, OpenCVS, a FREE implemen-
tation of the Concurrent Versions System.
http://www.opencvs.org/.

Linus Torvalds, Linus’ own version control
software’. nttp://www.kernel.org/pub/

software/scm/git/.

[21]

Cogito, a version control system layered on top
Qfgit http://www.kernel.org/pub/

software/scm/cogito/.

David Roundy, Theory of patches.
http://www.abridgegame.org/darcs/

manual/node8.html#Patch.

[23] Monotone, a free distributed version control sys-

[24]

[25]

[26]

[28]

tem. http://venge.net /monotone/.

Tom Lord, tla, a revision control system.
http://www.gnu.org/software/gnu-arch/.

Ltd. Canonical, Canonical main web site.

http://canonical.com/.

David Roundy, Darcs, a revision control sys-
tem. nttp://www.darcs.net/.

ISO (International Organization for Stan-
dardization). Information technology - Open
Systems Interconnection - Remote Procedure
Call (RPC). ISO organisation, 1996.

v0.1 - a
SCM.

Mercurial
distributed

http://www.ussg.iu.edu/hypermail/

linux/kernel/0504.2/0670.html.

Matt
minimal

Mackall,
scalable

[29] ArX, an easy to use distributed revision control

[30]

Syshﬁn.http://www.nongnu.org/arx/.

Matt Mackall, Patch: Mer-
curial 0.3 vs qit benchmarks.
http://lwn.net/Articles/133594/.

