CODING BY CONTRACT:
WHY THE FINE PRINT MATTERS

COLIN PERCIVAL

1. INTRODUCTION

If you ask most operating system developers what the role of their
security team is, you will probably receive a rather simple answer —
something along the lines of “find security problems, and fix them”.
As T have discovered during my tenure on the FreeBSD security team,
while some problems are very straightforward, there are many other
issues which raise difficult questions, both about how and where they
should be fixed, and whether they should be fixed at all.

While these questions are worth considering — and, since they are
not widely recognized, documenting — on their own merits, they also
provide some insight into how software should be developed in a world
where security is increasingly important and — thanks largely to the
rise of “open source” licenses — code is often re-used for purposes
unimagined by its original authors.

For clarity of terminology, in this paper a problem can refer to a
software bug, design error, configuration, potentially dangerous default
behaviour in a program, etc. — essentially, anything which one might
wish to fix. Some problems are security flaws (or equivalently security
issues), while most are fixed by developers without ever involving the
a security team.

2. WHAT IS A SECURITY FLAW?

The first decision which must be made concerning a problem reported
to or discovered by a security team is whether it is — or rather, should
be treated as — a security issue. Once it is clear under what conditions
the problem can be exploited and what an attacker can accomplish by
exploiting the problem, this becomes a question of policy.

The policy applied by the FreeBSD security team is that any privilege
escalation, disclosure of potentially sensitive information, or denial of
service will be treated as a security issue, with the exception of local
denials of service. Denials of service which can only be exploited by

authorized users of the system being attacked are excluded for two
1

2 COLIN PERCIVAL

major reasons; first, since a local user can always cause a performance
degradation by consuming resources, it is hard to define when a user
is causing “too much” of a performance impact on a system'; and
second, since local users are typically easily identifiable, local denial
of service attacks can usually be addressed via administrative or legal
means. Nevertheless, particularly egregious local denials of service —
for instance, where passing an incorrect value to a system call can
result in a kernel panic — are usually corrected as “Errata”, which are
equivalent to security advisories aside from the distinction of receiving
more testing since they are not required to be kept confidential.

Unlike FreeBSD, many Linux vendors do treat local denial of service
problems as security issues. We believe that this difference is largely
due to the nature of Linux as a kernel developed almost independently
of the “userland” which surrounds it: While the concept of ‘upgrading
to a newer kernel’ to fix a problem is foreign to FreeBSD users?, it is
widespread in Linux; since local denial of service problems almost al-
ways result from kernel bugs, correcting them in Linux involves nothing
beyond advising users to upgrade to the latest kernel.

On the other hand, some operating systems do not treat any de-
nial of service problems as security issues. To take a recent example,
when a flaw was found in the pf firewall which allowed a sequence
of three packets to cause a kernel panic in some firewall configura-
tions, FreeBSD issued a security advisory [4], but while the problem
was fixed in OpenBSD and the fix was merged to the OPENBSD_3_7 and
OPENBSD_3_8 CVS branches corresponding to the previous two releases,
no advisory was issued and no note was made of the issue on the ‘re-
lease errata & patch list” web pages [5, 6]. From one perspective, it
is correct to argue that denials of service are not security problems
— after all, information can neither be obtained nor damaged by an
attacker — but most companies which rely upon the Internet for their
revenue would most likely disagree.

Finally, there are some people who even consider some potential priv-
ilege escalation problems to not be security issues. In the aftermath
of the author’s public announcement of a side channel exploitable in
the shared cache of Intel processors with Hyper-Threading [7], an In-
tel spokesman remarked that ‘in order for this particular exploit to be
launched in a system, the system has to already have been compro-
mised’ [9] — ignoring the many systems which have untrusted local

Note that any sufficiently advanced local denial of service attack is indistin-
guishable from a legitimate user who is trying to get a lot of work done.

2FreeBSD users are always encouraged to keep their userland and kernel
synchronized.

CODING BY CONTRACT: WHY THE FINE PRINT MATTERS 3

users — while many argued that this problem should not be corrected
since ‘there are many far simpler attacks.

3. WOULD ANYBODY REALLY DO THAT?

In some instances, even if a problem is serious enough to be consid-
ered a security issue, the conditions required for it to be exploited are
sufficiently unlikely that the issue may reasonably be ignored. While
this paper was being written, one such problem was reported to the
FreeBSD Security Team by Jens Schweikhardt.

The problem in question concerned the handling of “here-documents”
in the FreeBSD command interpreter sh(1). When redirecting a pro-
gram’s input, rather than specifying a file from which to read the input,
it is possible to place the input into the middle of a shell script; the
interpreter reads this input, passes it to the program in question, and
then continues executing on the line after said input ends. If desired,
multiple here-documents can be provided and handed to the program
being executed on different file descriptors. What Jens discovered was
that if multiple here-documents were being used, and the first here-
document used backtick-expansion, then the contents of subsequent
here-documents would be executed rather than being correctly han-
dled as data.

At first glance, this seems like an obvious and serious security issue:
Data is being treated as code. However, the sequence of events required
for an attacker to exploit this bug is bizarre in the extreme: A program
must read data from an untrusted source (the attacker), use this data to
construct a shell script — stopping to somehow check that the backtick
expansions in the first here-document are safe* — and then execute that
shell script. Since the FreeBSD Security Team was unable to imagine
any situation where such an odd sequence of events would occur (if
nothing else, one would expect the untrusted data to be written to a
file, rather than passed as a here-document in a newly created script),
the decision was made not to handle the problem as a security issue.

A similar, if perhaps more debatable, case concerns Daniel Bern-
stein’s gmail mail transfer agent [1]. In May 2005, Georgi Guninski re-
ported an integer overflow problem which permitted a remote attacker
to obtain root privilege — but only by causing the ¢mail process being
attacked to read over a gigabyte of data from the attacker [3]. Bernstein

3We note that this is a self-fulfilling prophecy: If local privilege escalation prob-
lems are not corrected, then there will indeed be many such attacks available.

4If the backtick expansions in the first here-document were not verified to be safe,
then an attacker could execute his code using those, and the problem of accidental
execution of the second here-document would not make the situation any worse.

4 COLIN PERCIVAL

responded to this by stating that ‘Nobody gives gigabytes of memory
to each qmail-smtpd process’ [2] — a statement which, in our opinion,
might be slightly over-optimistic in its assessment of the competency
of most systems administrators.

Nevertheless, whether Bernstein’s assessment of users’ plausible be-
haviour is accurate or not, the point remains that in the absence of
documentation stating under what conditions a program is to be used
— or, put another way, indicating what sort of crazy things a user can
do — the handling of security issues inevitably depends upon a judge-
ment call made by the author or maintainer of the code in question.

4. WHERE IS THE SECURITY FLAW?

When we move from considering a single application to considering
a system involving multiple independently produced components, the
questions become even harder: Now instead of wondering if we can
rely upon the user not behaving in a strange manner, we must consider
whether applications will use other applications, utilities, or libraries
in strange ways.

Returning briefly to the aforementioned side channel attack against
Intel processors with Hyper-Threading [7], we note that there are two
entirely independent components, each of which could be argued to
be at fault: first, the processors which allow information about the
addresses of data and code accessed to “leak”, and second, the crypto-
graphic libraries and other programs which manipulate sensitive data
in non-oblivious ways®. Given the lack of specifications concerning such
matters — to the author’s knowledge, prior to May 2005 no crypto-
graphic library ever documented whether or not it was vulnerable to an
attacker able to measure its memory access patterns, nor did any pro-
cessor vendor document whether or not such information was leaked —
the decision of which component was at fault became a judgement call
as to whether it is reasonable to expect such memory access patterns
to be disclosed®.

While in the case of Hyper-Threading both components could be ar-
gued to be at fault, there can equally be circumstances where neither

SWhile the most obvious target for attackers is code where cryptographic keys
are used and might be inadvertently disclosed, there is likely to be other sensitive
information equally susceptible to disclosure; for example, the act of finding a node
in a B-tree is likely to disclose information about the key being located.

5The author’s personal opinion is that in light of the large body of pre-existing
code which relies upon memory access patterns remaining secret for its security, it
is more reasonable to find fault with the recent introduction of processors which
violate this assumption; but this is an argument based on history rather than
security.

CODING BY CONTRACT: WHY THE FINE PRINT MATTERS 5

component can be said to be insecure, yet a security flaw still exists
in the system considered as a whole. Consider as a first component
an application which downloads some files from a remote server (which
the attacker is assumed to be able to compromise), verifies that they
have an appropriate structure (say, that they contain lines of the form
key$value, the value only contains letters and digits, and that no line
is too long), performs some processing of these files using the standard
UNIX text file manipulation utilities (sort, comm, join, ...) to pro-
duce a list containing a subset of the value fields, reads those values
into shell variables, and uses them as the names of files to be created,
modified, and/or deleted”. Given that the value fields were verified to
be “safe”, there should be no danger introduced by using them as file
names.

Now consider as a hypothetical second component a version of the
sort (1) utility which has the following bug: Any time it should out-
put the line “aaaaaaaaaaaaaaaaaaaa”, it instead outputs the line
“/etc/master.passwd”. A system which uses these two components
together will clearly be insecure, since the attacker can modify or delete
the system password file, causing at very least a denial of service; but
where is the security flaw?

While the bug described in the hypothetical second component is cer-
tainly a very peculiar bug, the mere fact of producing incorrect output
would not normally constitute a security flaw; since this hypothetical
utility will never execute arbitrary code provided by an attacker, it is
hard to justify claiming that it is insecure. On the other hand, the
first component certainly doesn’t contain a security flaw — it doesn’t
contain any flaw. Instead, the security flaw results from an “innocent
bug” in one component together with how that component is used by
an independent, and completely bug-free, second component.

5. CODING BY CONTRACT

To see how these questions can be made somewhat less troublesome,
consider the nature of an application or library interface: The funda-
mental essence of such an interface is a contract specifying the responsi-
bilities of the caller and of the function(s) being called. At one extreme,
a C header file providing function declarations offers a contract spec-
ifying the number and types of variables provided by the caller, the
manner in which they are passed (which usually defaults to a standard
calling convention) and the type of variable returned by the function;

"The author’s Portsnap utility [8] for secure updating of the FreeBSD ports tree
operates approximately in this manner.

6 COLIN PERCIVAL

more commonly there is also some vague and/or out of date documen-
tation about how the code is to be used. As we have seen, such limited
specifications create havoc for security officers: Without knowing how
code is permitted to be used, it is impossible to determine except as
a judgement call whether a problem exists in the code in question or
instead in the unrealistic expectations of the person using it.

At the other extreme, formal specifications attempt to express the
precise behaviour expected of a component into a rigid, and often
machine-parsable, language. Formal specifications have a poor record
of real-world usage — the vast majority of software developers either
lack the expertise to use formal specification languages or find it too
burdensome to update formal specifications every time code is modified
or re-purposed — but even when used correctly, formal specifications
provide at best proof that code is not operating as specified, not proof
that the code in question is insecure. Just as when specifications are in-
formal, or lacking altogether, the question of whether a problem should
be considered to be a security issue can end up with a judgement call
about how the code in question is likely to be used by an entirely
independent component.

Rather than providing a single set of specifications — detailed or not,
formal or informal — we believe that the needs of security dictate that
two sets of specifications should be provided: First, the conventional
specifications which state how code should behave, and second, a new
set of specifications which state how code is guaranteed to behave.

6. THE FINE PRINT

The concept of stating separate “expected” and “guaranteed” be-
haviour is not new to the field of computing; it has been used for
decades in the analysis of algorithms, and as any undergraduate stu-
dent should be able to tell you, running a naive quicksort on data from
an untrusted source is not a good idea if you want to get an answer
quickly. In our case, however, we are not considering the range of pos-
sible running times of an algorithm over varying input; instead, we are
considering varying bugs.

The key insight is that while the correct functioning of a system may
depend upon every part of the system operating as expected, the secu-
rity of a system usually depends only upon individual components not
failing in particularly spectacular ways. To take the earlier example
of a buggy sort (1) and a shell script using it, the correct functioning
of the system relies upon sort (1) correctly sorting its lines of input;
in contrast, the security (at least as far as the particular hypothetical

CODING BY CONTRACT: WHY THE FINE PRINT MATTERS 7

problem described earlier is concerned) relies solely upon the assump-
tion that every line of output from sort (1) was a line of input to the
utility.

Adding this fine print to code specifications has three benefits. First,
by clearly stating what behaviour is guaranteed, and under what con-
ditions it is guaranteed, the task of a security officer is made far simpler
since it is immediately clear whether a problem needs to be handled as
a security issue.

Second, this provides a mechanism for developers to telegraph to
the users of their work an indication of which features, or under what
conditions, the code is most reliable. Developers are often very much
aware of the deficiencies in their work, but hesitate to publicly docu-
ment such things as “I was drunk when I wrote this, and don’t know
how it works”; in such circumstances, simply not mentioning the code
in question in the security guarantee would allow users to avoid relying
upon that code where it might have security implications.

Finally, by separating features into two tiers — those which are be-
lieved to work, and those which are guaranteed to work — the task
of debugging is immediately simpler. Fewer supported features means
less code and fewer bugs; and given a fixed number of eyeballs, concen-
trating them on the code which really matters is going to make those
bugs far more shallow than they would be otherwise.

REFERENCES

1. D.J. Bernstein, gmail.
http://cr.yp.to/qmail .html

2. D.J. Bernstein, The gmail security guarantee.
http://cr.yp.to/qmail/guarantee.html

3. G. Guninski, 64 bit gmail fun, May 2005.
http://www.guninski.com/where _do_you_ want billg to_go_today 4.html

4. FreeBSD Project, Security Advisory FreeBSD-SA-06:07.pf, January 2006.
http://security.freebsd.org/advisories/FreeBSD-SA-06:07.pf.asc

5. OpenBSD Project, OpenBSD 3.7 Errata.
http://www.openbsd.org/errata37.html

6. OpenBSD Project, OpenBSD 3.8 Errata.
http://www.openbsd.org/errata38.html

7. C. Percival, Cache missing for fun and profit, BSDCan’05, May 2005.
http://www.daemonology.net/hyperthreading-considered-harmful/

8. C. Percival, Portsnap, October 2004.
http://www.freebsd.org/cgi/cvsweb.cgi/src/usr.sbin/portsnap/

9. J.G. Spooner, Student Raises the Specter of an Attack on Intel Chips,
eWEEK.com, May 2005.
http://www.eweek.com/article2/0,1895,1815954,00.asp

IRMACS CENTRE, SIMON FRASER UNIVERSITY, BURNABY, BC, CANADA
E-mail address: cperciva@freebsd.org

