Using the Andrew File System with BSD

H. Meiland
May 4, 2006

Abstract

Since the beginning of networks, one of the basic idea’s has been sharing of
files; even though with the Internet as advanced as today, simple platform
independent file sharing is not common. Why is the closest thing we use
WebDAV, a 'neat trick over http’, instead of a real protocol?

In this paper the Andrew File System will be described which has been
(and is) the file sharing core of many universities and companies world-

wide.

Also the reason for it’s relative unawareness in the community will

be answered, and it’s actual features and performance in comparison with
alternative network filesystems. Finally some information will be given on
how to use it with our favorite OS: BSD.

1 History

1984 Carnegie Mellon University, first release

1989 TransArc Corporation formed by part of original team members
1994 TransArc purchased by IBM

1997 Start of Arla development at stacken.kth.se

2000 IBM releases AF'S in opensource (IBM License)

2000 http://www.OpenAFS.org

2006 good support for lot’s of platforms, many new features etc.

2 Overview

2.1 User point of view
2.1.1 Global namespace

While discussing global filesystem, it is easy to dive into a organization,
and explain wonderfull features like having replicas of often accessed data in
branch-offices, and moving home-directories to local fileservers when mov-
ing employees between departments. An essential feature of AFS is often
overlooked: a common root as accesspoint of all AFS stored data. Think
about it, a simple cd will take you from here to the other side of the world,
from private storage locations, to commercial companies to universities; all
accessed through the same /afs mountpoint.

global path to files, e.g.

path server location
/afs/andrew.cmu.edu # Pittsburgh, USA
/afs/cern.ch # Geneva, Switserland
/afs/gorlaeus.net # Leiden, The Netherlands
/afs/openafs.org # USA + Sweden

2.1.2 Getting access

As mentioned earlier, the security system of AFS is based on Kerberos; this
means the first step to take when accessing files is to make sure you have
the right credentials: #>kinit <username>, whether you have obtained ker-
beros tickets can be checked using #>klist.

The next step is not obvious, due to the early integration with kerberos, a
path was chosen to integrate the actual authentication code in the kernel;
hence the kerberos ticket has to be converted to a AFS token, and stashed
into the kernel using #>aklog or #>afslog or #>afsblog or whatever tool-
name is current (check with your local sysadmin). To check whether this
part has succeeded, use #>tokens, this will show you your current tokens.

client direction kerberos afs

#>kinit username@realm | to kerberos
to client | krbtgt/realm@realm

#>afslog <cell> to kerberos
to client afs/cell@realm
krbtgt+afs/cell=token to client

#>1s /afs/<cell>+token to afs

to client files and dirs

2.1.3 ACL and quota

Like any grown up filesystem, AFS supports access control lists(ACL). These
ACL’s work on directory level, and allows the owner of a directory (or any
user with administrative priviliges on that directory) to define groups and
set permissions. The system administrator can set a quota on a volume,
which can give a warning once the treshhold nearby.

2.1.4 Supported platforms

To be able to run a distributed filesyste among large group of users, it is
very important to support a number of operating systems; fortunatly the
current list of available clients is long enough to be of real intrest: *BSD,
Linux, Microsoft Windows XP, Apple Mac OS X.

2.2 Admin point of view
2.2.1 Cell, Partitions and Volumes

For administrators it will be a learning curve to work with AFS. The view of
the user is just that: an interpretation which is made available to the user,
and which can even be completely different to an other group of users.

The underlaying architecture consists of the following elements: the admin-
istrative unit is called a cell, which is compareble to a dns domain. In these
cells, the hardware consists of servers. Each server has partitions (mounted
in the filesystem as /vicepa etcetera. On these partitions volumes can be
stored. These volumes are the elements which can be used to build a view
for the user. The same way as physical filesystems are mounted under a /,
volumes can be mounted in the root of a cell: /afs/<your_cell>/<volume>.

2.2.2 Integration with Kerberos

Due to the early integration with Kerberos is the first versions, there are
some issues and limitations grown due to backwards compatibility. AFS has
been one of the first services with an integrated Kerberos server; but since
the overall acceptance of Kerberos as a generic authentication service, this
integrated server is dismissed in favor of the MIT or Heimdal versions of
Kerberos. Although both versions work, some care has to be taken while
creating the initial KeyFiles on the first AFS server in a cell. The biggest
limitation is the encryption of the afs tickets; they can only be used when
encrypted using (single) DES.

To create the KeyFile for your first afs server, the procedure for MIT or
Heimdal are different. While the ktutil of Heimdal can easaly transform a

(Kerberos) keytab file to a (AFS) KeyFile!:

#>kadmin -p <username>/admin

kadmin> add --random-key afs/<cell>

kadmin> ext_keytab -k /tmp/afsvbkey afs/<cell>
#>echo <cell> > /usr/afs/etc/ThisCell

#>ktutil copy /tmp/afsvbkey AFSKEYFILE:/tmp/KeyFile

To create a KeyFile out of a MIT keytab, a utility called asetkey is
required:?:

#>kadmin.local -q "ank -randkey afs"
#>kadmin.local -q "ktadd -e des-cbc-crc:afs3 -k /etc/krb5.keytab.afs afs"
#>asetkey add 4 /etc/krbb.keytab.afs afs

Because of the use of Heimdal Kerberos on most *BSD platforms, it might
be required to do some tricks to create the correct KeyFile when using MIT
Kerberos. To keep it all comprehensable you might like to install a seperate
workstation based on MIT Kerberos just to create the KeyFile, and transfer
it to the AFS servers using e.g. scp.

2.2.3 File locking

When rolling out AFS, be carefull of which applications are going to use
this. AFS is not designed to support databases, since they make heavy
use of byte-range-locking while AFS only supports file-locking. This is also
something that can come up when users try to share their Microsoft Office
documents, since the Microsoft applications tend to use byte-range-locking
when users try to work on the same document simultaniously.

3 Alternatives

While looking at alternative distributed file systems, it is almost impossible
to find one which implements enough functionalities to really compare with
AFS. With the features defined in chapter 2 we could see if any other systems
can compare.

3.1 Coda

Although Coda development started at CMU out of AFS2, it remains a
research project, and not ready for production usage: ”I’d say a small user-
base (20-30 users) and a few servers are pretty workable. (...) Don’t expect

"http:/ /www.public.iastate.edu/ kula/talks/afs-bpw-2005/afs-bpw-2005-iowa.html
*http://www.seismo.ethz.ch/linux/afs /node6.html

to easily handle terabytes of data or a large group of non-technical oriented

users.”?

3.2 WebDAV
HTTP Extensions for Distributed Authoring - WEBDAV 4

3.3 Microsoft DFS Namespace

The Microsoft DF'S namespace (which used to be called Distributed File
System) is an expansion to Windows file sharing services. It allows users to
view the shared folders in a virtual tree, and connect to the closest available
server. 3rd Party software for Mac OS X available®.

3.4 Network File System version 4

The follow-up of the immense popular NFSv3; Main changes: Kerberos
based authentication, client side caching, ACL support (optional), removal
of portmapper, runs over TCP.

3.5 Other projects

e Server Message Block (SMB); not feasable due to firewall constraints
e Intermezzo; Project seems dead since june 20026

e WebNFS; nfs without a portmapper, overrun by nfsv4

3.6 Comparison

feature afs coda nfs.v4 smb/dfs
namespace | global per server | per 'cluster’
acl directory file file
wan

4 Implementations: OpenAFS and Arla

The original source form TransArc is now maintaned by the OpenAFS
developers, a group of developers mainly from the old customer base of
TransArc/IBM who have years of experience in running afs cells. While the
code is open source, the license of the code has still parts of the IBM open

3http://www.coda.cs.cmu.edu/misc/stability. htm]

1RFC 2518, Standards Track, Proposed Standard. February, 1999
Shttp:/ /www.thursby.com/products/dave.html
Shttp://www.inter-mezzo.org/index.html

source license on it, and thus can not be intergrated into BSD’s. During the
commercial fase of afs, Arla was started as a project on the Royal Institute
of Technology, Sweden (KTH) in 1993. In the next few years, the project
slowed down a bit until 1997, when an rxkad implementation was written
by Bjrn Grnvall and the project was put into a CVS server. The main focus
is on free OS’ses such as Open- Free- and NetBSD and Linux.

5 Status OpenBSD

The OpenBSD team has supported AFS by integrating the Arla code since
release 3.4 (Nov 1, 2003). Currently Arla 0.35.7 is supplied with OpenBSD
3.9 Release (Released May 1, 2006). To get it running, only the folowing
trivial steps need to be taken:

#>echo afs=YES >> rc.conf.local
#>mkdir /afs
#>reboot

The 0.42 release from Arla has been tested on OpenBSD 3.8, to run correctly
in 3.9 you will have to check out -current form cvs: installing arla-current
from cvs:

> cp src.tar.gz sys.tzr.gz /usr/src

cd /usr/src; tar zxvf src.tar.gz; tar zxvf sys.tar.gz
perform some kernel build magic up to make depend

> env CVS_RSH=ssh cvs -d anoncvs@anoncvs.stacken.kth.se:/stacken-cvs \
checkout arla

pkg_add autoconf-2.59.tgz ; pkg_add automake-1.9.6p0.tgz
pkg_add libtool-1.5.18p2.tgz

AUTOCONF _VERSION=2.59 AUTOMAKE_VERSION=1.9 autoreconf -f -i
./configure && make

make install && mkdir /afs

echo "/usr/arla/sbin/startarla" >> /etc/rc.securelevel
reboot

H H HF V V H H=

The stable release of OpenAFS, version 1.4.0 will also compile and run in
OpenBSD, Ober has created a port © and the following steps should get you
running &:

cd /usr/ports/met && tar zxvf openafs.tgz
make && make install
mkdir -p /etc/openafs ; mkdir -p /usr/vice/cache

Thitp : / Jwww.linbsd.org/openafs.tgz
8from http : //www.linbsd.org/afs_on_openbsd_client.html

cp ThisCell CellServDB /etc/openafs
echo "/sbin/modload usr/local/lib/openafs/libafs.o" >> /etc/rc.securelevel
echo "/usr/local/sbin/afsd -stat 4000 -dcache 4000 -daemons 6 \
-volumes 256 -files 50000" >> /etc/rc.local
mkdir -p -m 0755 /afs
echo "/afs:/usr/vice/cache:198112" > /usr/vice/etc/cacheinfo
reboot

+*

+H+

6 Status FreeBSD

On versions in the Legacy release (5.x), Arla works out of the box. The plain
configure, make, make install, startarla should give you access to all open
AFS cells. Unfortunatly the 6.x release has seen some major changes in the
VFS interface which have not been completely updated in the Arla code. At
this time Arla will thus not function on the newer FreeBSD releases. Work
is very much in progress to update to the new VFS interface.

7 Status NetBSD

- arla from ports
arla 0.42 running
- configure, make, make install, startarla

8 Future Work

The main focus points of Arla-on-BSD development seems to be the update
to the FreeBSD VFS interface. It would be nice to see a update of the arla
code in OpenBSD to a recent version, which would allow easier development
on both sides. On the OpenAFS side, a working port of the client part hes
been created for the OpenBSD platform. Once this is working, it should be
feasable to bring this also the the other BSD’s. Even though this won’t be
as easy as Arla development due to lisencing constraints.

