FAIL

Zach Loafman
Isilon Systems

* Errors are hard to test. You can ..
— Inject [fake] hardware errors
* Doesn’t work for most software error testing

— Manually change things in a debugger

* Works, if you know what you’re doing, but it’s slow

— Use fail points!

* Fail points allow you to add code points where
you might want to inject failures.

Example:

error = func(foo, bar, blatz);
i1f (error) {
/* do stuff */

Suppose you want to change the code in “Do
stuff”. How well do you think you can test it?

Solution: Add a fail point

#include <sys/fail.h>

[...]
error = func(foo, bar, blatz);
KFAIL POINT CODE (FP_KERN, myfailpoint,
error = RETURN VALUE) ;
1f (error) {
/* do stuff */

Using the fail point:

KFAIL POINT CODE (FP_KERN, myfailpoint,
error = RETURN VALUE) ;

sysctl fail point.kern.myfailpoint
fail point.kern.myfailpoint: off
geryon# sysctl fail point.kern.myfailpoint="“.1l%return(5)"

fail point.kern.myfailpoint: off -> .1Sreturn(b)

What's this doing? When the KFAIL_POINT is encountered, 0.1%
of the time the code in the third argument is executed, with
the value of RETURN_VALUE set to the sysctl value.

Other example usage:

$return (5) ->5%return (22)
.1% of the time, return 5,

5% of the remaining time, return 22.

%sleep (100)
1% of the time, sleep for 100ms

panic() / break() / print()

panic immediately / break to debugger / print to console

* Caveats:
— Incredibly easy to shoot yourself in the foot

— Be careful with sleep()

* You can override the sleep function if you manually build the
fail point using fail_point_init/fail_point_set sleep fn.

* Alternately, you can write your own sleep by wrapping
RETURN_VALUE.

e Status:

— Patch ready for CURRENT, only one failpoint added.
We have hundreds at Isilon, but only a couple in the
base kernel.

— I'll send the API to freebsd-arch in the next few days

