eXecute-In-Place (XIP) Support for NetBSD

Masao Uebayashi
Tombi Inc.
uebayasi@tombi.co.jp

April 5, 2010

Abstract

XIP is a technique to execute programs directly from NOR FlashROMs without user programs copied into RAM as
page cachelts basic functionality is realized with small changedigiBSDbecaus@age cachenanagement is already
concentrated in single place calld@8C, where all file data access (read() / write(), and mmap()) go through. This paper
explains the design and implementation of the changes made ietBSDkernel to supporKIP.

1 Background system can omit loading a mapped file from backing
store devices. It also saves dynamic memory (page
1.1 WhatisXIP? cache) allocation.

In Unix-like systems, programs are usually stored in e Power consumption
filesystems mounted on block devices, most typically
hard disk drives. OS copies programs to execute, be-
cause executable region has to be memory mapgéel.

is a technique to execute programs directly from NOR
FlashROMs without programs copied into RAM page
cache

RAM consumes more power than ROM. Products
can run longer if you can execute programs running
directly on ROM. This matters for embedded pro-
ductions that are driven by batteries.

On the other hand, XIP comes with many restrictions

RT>§JIFS), IS \;]ery commonly szeln' n emhbeq deld ?hsesu(e.c?escribed later sections. It's not an option to solve prob-
), whose memory model is much simpler than M&ms magically. It's an option for developers who under-

Unix system run_-t|me 'mage 1s ma_de of kerne_l an_d US&and its implications and limitations and best used only
spaces. Kernel is always resident in RAM during its e

. : . .) vhen the product is carefully designed with other tech-
ecution. Kernel XIP is easily achievable because it's b y g

) . . ologies like NAND FlashROMs as data storage.
ready almost XIP by nature; it has a single copy of image. g g

Kernel XIP is widely used in Linux to speed up boot time
by omitting initial copy of kernel image[3]. 1.3 Why XIP looks odd?

Userspace XIP is more difficult, because user program .)
execution is more complex activity built on top of a nurAS @lready mentioned, programs are usually copied from
ber of levels of abstraction to meet various requirments®Packing store (a block device) to RAM. Why? CPU can
users and user programs (applications); various deviéXgcute only instructions that are directly accessible from

and filesystems, dynamic execution CPU, which means, the device’s data is mapped in CPU’s
This paper explains only userspace XIP support. physical address space. The main memory (RAM) serves
that.
Traditionally Unix has had an assumption that user pro-
1.2 Who needsXIP? y p p

grams are placed in a filesystem, which in turn is placed

The purpose of XIP is all about reducing memory usadjie @ backing store (block device). Unix has ignored sit-
in user program execution. We want to reduce memd#gtions where programs are executed directly from such
concumption mainly in two reasons: devices, because it's expected to break almost every as-
sumption made in VM and fintroduces lots of oddities.

In NetBSD however, it has turned out to be not that
Dynamic memory allocation is a complex activitydifficult to achieveXIP because most part of problems are
By executing user programs directly from ROM, thalready solved byJBC[2]; it concentrates access (both

¢ Internal simplicity

via mmap() and read()/write()) to pages in single plac€ompatibility

page cacheThe details are explained later. _ _ _ o
While XIP is used in somewhat limited contexts, we don't

want to require any unnecessary tasks. Our implemen-

2 Goals tation is independent of filesystem types. Userland pro-
grams don’t need any modification; both statically linked
Simplicity and dynamically linked programs work as usual. Access

to file data within executable files is consistent. Although

Both of the design and implementation have to be S"Hynamically linkd programs don't really make sense, be-
ple enough to be understood by all users and developgisg;se they're copied into RAM.

We don't try to solve everything in one place; rather one o, x|p implementation resulted in introducing a few

thing to solve in one place. Users who want our XIP {0 concepts in thaletBSDkernel. We had to teach the
solve a simple problem can easily solve it. Users W'Pf_éw knowledges to the VM. We tried best to avoid any
fac_e a complex problem _(programs, data, hardware IIn,"N_PI backward-incompatible changes to any VM primi-
tations, many oth(_ar.reqmrer.nents, ...). have to solve .thﬁ\lfesl We did some cleanups to some complex VM code
problem by combining multiple techniques, and desigf,gments (especially the fault handler) to isolate condi-

ing their products by themselves. We assume that Usg5ss and clarify responsibilities, but still, no backward
are not stupid. compatible changes are made.

Correctness
Performance

NetBSDis known as its well thought design. The changes) .
made by XIP must be proved correct. Ideally all thigead performance of ROM devices depends on device’s

combinations of the possible operations are identifi@§Cess Speed, which is usually very slow compared to
and tested. In reality, it was quite difficult because tfgAM. CPU's cache (both for instruction and data) is
UVM[1], especially the fault handler, was doing too mang}]_andatory to make(l!:’ usable in practice. Although 't,
things in scattered places. The code has to be clarified BEgNt P possible to invent some page cache mechanism

fore the XIP changes are applied, to prove the correctnd€dicated foiXIP, we don't consider this for simplicity in

of the relevant change in the code, instead of adding coffiiS Paper. It would be useful if filesystem is optimized

plicate code fragments and claim that "it just works”. for XIP. At this point we use FFSv1 as a proof-of-concept
target. Filesystem optimization is discussed in later sec-

. tions.
Code cleanliness

Changes made by this work to tiNetBSDkernel touch

VM code, which is one of the most critical code path an% Use cases

almost everything itNetBSDrelies on. The changes have)

to be not only correct, but also harmless for iR case 3.1 Possible users oXIP

performance, and clearly separated from XdR-code. XIP makes sense best where available RAM size is ex-

Changes made to suppoktP can't be centralized in tremely limited. Most typical cases are embedded devices

one place bu_t aare s_pnn_kl_ed in the source _tre_ze by natL”l?é cellphones. Smaller RAM size gives us not only the
Such a functionality is difficult to maintain if its overall

L . reduction of cost but also power consumption at run-time.
design is not clearly documented. Design documentaugavanced users who want to riNetBSDwith very low
is desirable.

power consumption, and who can customize userland are
o all possible targets ofIP.
Memory efficiency

Save as much memory as possible. We save not only 8x2 Requirements
tra copy of executable files to RAM, but also page state

object gtruct vm_page) which is usually allocated oneNOR FlashROM

for each physical memory page. All teéruct vm_page
objects occupy about 1.8% memory of the size of the r
physical memory pages on NetBSD/sgimips 5.0.

Tr?is is the most important, but the only hardware require-
Fent. XIP doesn’t make sense at all without this. Once
you have write a filesystem image into a ROM, you don't

10n NetBSD5.0 sgimips, the size eftruct vm_page is 72. Given Nneed write operation at run-time.
that page size is 4K, (1 * 1024 * 1024) / (4 * 1024) = 256ruct
vm_page objects are allocated for IMB ROM and total size is 72 * 256 18.4KB.

Kernel customization 3.4 Development

While NetBSDis moving toward modular and binary disBasically ourXIP implementation will become part of the
tribution, XIP is not provided as a part of binary distribustandard NetBSD source distribution. NetBSD’s develop-
tion. It's is also very unlikely thakIP support is enabled ment environment is very consistent and self-contained;
in the official binary images, becau3@P is used only users can build NetBSD image (compiler, kernel, user-
in certain contexts. It adds extra code, though it's velgnd, filesystem image) on almost every POSIX-like op-
small, in some very critical code paths like fault handlegrationg systems.
EnablingXIP is not a good option for the single official Our XIP implementation needs no special change ex-
binary release. cept users have to build their own userland programs as
a crunched binary, whose build procedure is a little spe-
cial and different than the standard build procedure pro-
Userland customization vided by NetBSD, build.shXIP makes sense for statically

. . linked programs, which don't need to rewrite
Although our XIP implementation can execute any user- prog

land programs, users are recommended to customize and

build their own userland. 3.5 Deployment
When a write occurs into XIP’ed process address spaﬁ; , . . , .

the VM handles it as copy-on-write: allocate a page rﬁe current implementation doesn’t support write. Users

P ve to unmount the XIP’ed filesystem to update the
memory and copy the original data (on NOR FlashROM ; .)
to a RAM page. This means that users have to carefufl'l system image. Upda_lte CO.UId pe done via wr|t9(2)
avoid copy, otherwise everything is copied into RAM, an the flash(4) block device driver in NetBSD, or using
XIP doesn't make sense at all. Typically users are rdmware. Users have to carefully design the system and
ommended to build a single statically linked program i'ﬁs deployment plan.
userland. Such a program has to be configured and built

by themselves. 3.6 Operation

All users have to do is to mount the filesystem as read-
3.3 Restrictions only and xip options explicitly specified. Root partition
(/) can be mounted as XIP too.
Can’t run from NAND FlashROMs

NAND FlashROM is getting cheaper and more wideld Qyerview

used. Unfortunately NAND FlashROM can't be used

for XIP because its block (data) is not directly memoryrg realizex|P the following parts irNetBSDare involved:
mappable; its data are accessed by exchanging a sequence

of commands and a buffer. As a result, NAND FlashROM

is used in a very different way from NOR FlashrRom4.1 Host (development environment)

NOR is for mainly executables like bootloadersXiP-
ready programs (either kernel or userland) and data fil
Other data, imagine MP3 files in mobile audio player
would fitin NAND FlashROM. It's very common for em-
bedded systems to implement both of NOR and NAN
FlashROMs.

As already explained, XIP will become part of the stan-
§3’rd NetBSD source distribution. NetBSD distribution
iS truely self-contained; it contains compilers to build

etBSD, and both userland and kernel source. The whole

etBSD image can be built on most POSIX like operating
systems like Linux and Mac OS X.

The current XIP implementation is transparent to
Can’t compress filesystem images filesystems, which means, users can use any filesystem for

XIP image in theory. But in practice, NetBSD"s filesys-

It's been a common technique to compress the systetes1 image creation command (makefs(8)) only supports
image to reduce the size of the image stored in the ROf#%(4) and cd9660(4). Users are strongly recommended to
Typically such a compressed image is loaded and inflatgsk ffs(4) for XIP.
from ROM to RAM by the bootloader. Obviously such a To avoid unnecessary copy from ROM to RAM, ex-
compressed ROM image can't be executed directly. Imeutables in XIP’ed filesystem image should have read-
age compression is a very opposite approackiBfwhere only text segment, most typically statically linked exe-
the size of RAM is considered more important than ROMutables. In highly customized environments, NetBSD
Users decide which offers crunchgen(8) to build a bundled static binary as

Linux’s well-known BusyBox does. The development inthem into the process’s address space, and fixes the ad-
terface of crunchgen(8) is a little inconvenient; developelgesses embedded in the text segment of the main program
have to get used to it. and libraries. The actually modified code and data depend
Altenative to statically linked or crunched binaries ign the format of executable files. Some architectures may
position independent, dynamically linked executable wigupport read-only text relocation, where code is carefully
read-only text segments. Unfortunately these formats @enerated to be position-independent and addresses are
not common in NetBSD yet. When these will becomi@soved by referring to the intermediate relocation table
available, these should be just part of NetBSD's toolchain,.data section. Thus text segment is not modified at run-
and users just have to build their binary with enablirigme. This topic is beyond this paper’s scope. Those who
some configuration option. want to build a complicate set of userland programs may
In summary, while NetBSD lacks many features nowonsider this approach.
the development environment is self-contained, and will Text segment may be modified for debugging purposes.
be so even after new features are added. Internally this is seen to VM as a write operation to a pri-
vate map. This just works in XIP environment.
The organization of user programs should be carefully
4.2 Hardware designed, especially placement of data. The basic rule
. _ . is to concentrate read-only data and don’t modify them.
Basically the only hardware requirement to function XIBVM doesn't allocate memory for .data and .bss sections

s m_emory-mappable ROM, thgt is NOR FlashROM. .l ntil pages are really modified and write access is trapped
reality, you should carefully design your product consigyy, e ction fault. Read-only data marked as “const” in

ering XIP’s characteristics qnd your use cases. First fcode result in read-only segment (*.rodata” in NetBSD)
all, XIP's performance heavily relies on the read acce, the executable file. Other data will be modified at run-
speed of NOR FlashROM. Secondly, CPU’s cache (bo[}

. : dd Ideall \ e sooner or later. There is no point to record these data
instruction and data) matters. |deally user programs’ text ;o j, NoR FlashROM, because those data are destined

segments are fully resident in instruction cache. Actut% be copied to RAM. Users may consider to compress

Eatr:]he_and memory behavior depends on user Prografiase data in filesystem and read them via 1/0. Some ad-
ehaviors. o . vanced filesystems like AXFS[3] automatically compress

In extreme situations, you want to save active PTE usggia segments and store them transparently. Even with

in MMU for text segment. Mapping long, read-only texg,ch an assist from filesystems and other infrastructures,
segment using super page is easy in theory. But unforflders have to carefully design their programs.
nately NetBSD'’s VM doesn'’t support super pages yet.

4.4 Target (kernel)
4.3 Target (userland)

Block device drivers
Our XIP needs help of userland programs in that they have

to be built in an XIP-friendly form. That is, unnecessanflP-capable ROM devices behave in two ways. Firstly

write to text and data segments are best avoided, otherwiSea block device to provide usual block I/O interface

those pages are copied into RAM as copy-on-write. ~ for kernel to access filesystem metadata. Secondly it's
Users are encouraged to use “crunched binarglirectly mapped to user process spaces.

Crunched binary is a statically linked executable file with Usually such a memory mapping operation is done via

bundled library functions. Usually statically linked execharacter device’smap () interface. InXIP, the device

cutable files have copies of library functions. By crunct@nly has to pass the physical address to filesystem sub-

ing those statically linked executable files into a singystem at mount timemmap () is called by kernel's exec

file, those duplicate library functions are shared. handler, and resolved in the succeeding fault handler.
While our XIP implementation is transparent to user-

Ianq executablgs, users have to upderstand the _inter_”?‘ll'—k?fae'system

havior to benefit from XIP, otherwise pages are implicitly

copied into RAM and just keep running normally withoukKIP makes sense only for directly memory mappable

any error. ROM devices. These will be recognized as a block device,
Text segment is modified at run-time mainly for twavritten a filesystem image, and mounted onto a mount

cases; code relocation and debugging. Code relocatfmint.

occurs in dynamically linked libraries whose actual ad- This means that the capability ¥fP is known at mount

dresses are determined at run-time. The dynamic (rtime. If anXIP capable block device is mounted, kernel

time) linker collects necessary dynamic libraries, mapsarks the mount point aslP-capable. If a vnode is cre-

ated on that mount point, kernel marks the vnodXis to the NetBSD’s VM subsystem called UVM. It was a

capable. This reduces run-time checks. fundamental design change (despite the small amount of
Except these condition checks, filesystem is indepeatiff) made against one of the most complex subsystems in

dent of XIP in the current implementation. When VMNetBSD. The detail of UVM is described below.

handles a fault to map a device page, VM asks filesystem

the address of a given page-sized segment of a file. It's

specific to filesystems, but nothing special is needed or The UVM

XIP, because metadata is accessed via block device inter-

face, which is provided by aKIP capable block device5.1 History

drivers.
NetBSD has two interfaces to access filesystems; buftéY M[1] was developed by Charles D. Cranor and Gu-

cache and page cache. The former is used mainly ffatta M. Parulkar. It was merged into NetBSD 1.4 in
metadata (file attribute) and raw data retrieval withod®99- The initial motivations why it was developed to re-
opening a file via the standard file 1/0 interface for usefdace BSD VM were the following four reasons:

Buffer cache relies on the block I/O interface. This means

that XIP capable NOR FlashROM drivers have to provide ® COMPlex data structures

not only mmap() but also the block I/O interface so that .
its data can be accessed as a filesystem metadata by the

kernel. e no virtual memory based data movement mecha-
nisms

poor performance

Kernel execution handler

e poor documentation
Userland program execution is a special kind of memory
mapped file access tightly coupled with execution con-| ater another big change called UBC[2] was added into
text (process). Like usual file mmap(), program executipqetBSD 1.6 in 2002. UBC unified buffer cache and page
is done in two stages, preparation (mapping) and actdathe so that it could provide a unified access to page
access resolution (fault handling) as explained in the felaches both for I/0 methods (read() / write()) and memory
lowing sections. When a process requests the kernekigpped file (mmap()).
execute a program, the kernel looks up the given path, loyvMm and UBC are often told together as one of the
cates the file, and read its program header metadata h&ggest and greatest features of NetBSD, and have proved
NetBSD, this part of access is done via buffer cache ifis usefullness. Unfortunately, these are actually very
terface. Next kernel prepares a process context includggmplex systems, and understood only be a limited num-
per-process address space data structures. The kerneligsk®f people even in NetBSD developer’'s community.

VM to map the needed program sections into the creatgdch a situation has promoted the illusion of the greatness
address space following the read program header metagfaj\vM and UBC unnecessarify.

Userland program’s address space entries are always
associated with vnodes; after the executed process’s ad-
dress space is created, the content of the executed fileid Key features

may map a new executable code to extend itself (dynareB:py and overwrite, the chain extends. Managing such
link). . a_chain is a very complex operation. UVM addressed
When the mapped 'address space is executedyjiy by introducing overlay layer (amap) and flattening
userspace, the machind#MU causes a memory acCeSge chain: copy the overlay layer data rather than chain
fault. VM is responsible to load the actual page and rég-yhile managing those objects cleanly and avoid unnec-
ister the H/W mapping information so that the faultingssary copies. This also improved performance for copy-
process will see the data when it's resumed its executiqy}, . rite operations.
Another big change introduced by UVM was virtual
VM memory based data movement (zero-copy), which is con-

VM plays a major role in the XIP functionality Espe_sidered to be faster for transferring large chunks of data

cially XIP is about device pages (like NOR FlaShROM)- 2The author believes that great codes that are not understood are not
The author had to teach a new knowledge of device pagesgreat.

than copying them. According to the paper, UVM intro5.4 UVM Object and pager

duced three mechanisms to achieve zero-copy; page loan-

ing, page passing, and map entry passing. Unfortunately,

it seems that there is only one feature, page loaning, thfM’s basic functionality is to help access to a variety

is implemented and working. Its behavior is difficult t®f things laid in various devices, using page-sized mem-

understand. It's known that page loaning are not good ¥ chanks as a cache. UVM provides an uniform method

multi-processing environments. to access those devices. UVM represents these as an ob-
UBC totally changed the file /0 and page cache b’@_ct; a set of methods and data (backing store devices and

havior. While the core UVM interface was not affecte§2Ches) with linear address. This is called UVM object
gigtruct uvmobject). Such an object-oriented abstrac-

very much, the dirty work to manage page cache cow-"~, , X
is known as a well-established methodology to design

sistency is now responsible to pagers. Especially vno .) , ,
pager's page cache management code (genfs) is knowf §9mplicate system like VMs. UVM's core part doesn't

one of the most complicate codes in NetBSD. XIP beA€€d to know what kind of backing store a given UVM
efits UBC's work of unified page cache; the substanti@Piect belongs to, and can focus on provided page cache.

change needed for XIP is only to represent device pageshe method part to manage consistency between page
as page caches. In that regard XIP is considered to bezgBhe and backing store is called pager. Pager is respon-
extention of UBC. sible to manage its linear address, where page caches
are usually mapped. In the UBC's world, all access to
UVM object is via as memory mapped; even file I/O ac-
5.3 Virtual address space map gtruct cessisconvertedto memory mapped access by remapping
vm Jnap) manager user’s 1/O buffer onto kernel address space temporarily.

Thus pager is always entered from fault handler caused
UVM keeps virtual address space informationsasuct by memory access fault.

vm_map, Which represents a single contiguous virtual ad-

dress space. This doesn't mean all the address space [f1€r€ are a few “special” pagers; UBC pager, device
has are really usecstruct vm_map is responsible to all Pager, and Xen's priviledge page pager. These have a spe-
the operations associated with the virtual address spa@! ’fault handler so that it can override the default har'1-
Note that address space and actual memory on RAM 4igr's responsibility. UVM objects of these pagers don't

distinguished conceptstruct vm_map is only about the Nave actual page caches. XIP’s behavior can be seen sim-
former. ilar to device pager, because XIP also deals with device’s

pages. Unfortunately the current device pager can't han-

Actual space allocated in a givefiruct vm map has a .
edIe copy-on-write or other features to execute programs.

set ofstruct vm_map_entry, which represents a singl

contigugus virtual addrgss space wi.th a coherent attrik_)ute\s already explained, pagers are basically entered only
(protection, etc.). A variety of operations are made agaifigim the fault handler. The basic pager operations are “get
these data structures, like allocation, deletion, copy, shajgges” and “put pages”. When fault handler wants to get
changing attributes, etc. The map manager concentraigsage cache in a given UVM object, it asks the object’s
on the efficiency and correctness about given COﬂStrairﬁéger to “get” the page. The pager looks up a page cache
UVM has to keep information as simple as possible evalieady loaded in memory. If it doesn't exist, the pager
after time goes. executes |/O operations to retrieve the relevant data from
It doesn't, however, really need to focus on perfobacking store.

mance; history has shown that map entry management i§/ q . ible t q il
so complex that enhancing it causes additional compI?'(- node pager is responsible to manage vnodes (files).

ity. Especially kernel has a single address space and re, ggde management IS a super com_plex task because
its memory heavily. NetBSD is moving toward imple-I eSySIem is complex. Filesystem prov!des astandard_ set
menting another layer (called kmem(9)) of space manag%éoperatlons to manage data _stored in st_orage devices.
ment in between kernel memory allocator APl and UV c vnode_pa_ger maps page size grgnu!anty page caches
blocks in filesystems. This mapping is one of the rea-

map manager. kmem(9) caches address spaces and - . .
P 9 ©) b sons of the complexity. The another reason is that vhode

ories given by UVM map manager. It utilzes given r%ﬂﬁ aves asynchronously for performance reasons
sources as far as possible, and ask more resource 9 y yforp '

when it's really needed. kmem(9) is modeled after So-Write operation (“put pages”) collects pages to be writ-
laris. ten back to backing store. Vnode pager has to carefully
XIP has nothing to do with this layer, because mapanage pages. Pages may be memory mapped to user's
manager interacts actual pages only via the pager inteddress space. Pages may be shared among multiple ad-
face. XIP'ed pages are transparent to the pager interfadeess spaces too. Clean pages should not be written back.

55 Overlay (AMAP) manager process

read / write

The overlay manager in UVM is composed of two
main data structures; amagtfuct vm_amap) and anon
(struct vm_anon). amap is a mapping with a linear ad-
dress like UVM object. amap is allocated for each address
space to keep track of overwritten part. amap has slots to
store its own privately modified pages. These private over-
written pages are anons. anons fillamap’s slots. These are
special forms to avoid object chain for privately modified,
copy-on-write data. They're shared and reference counted
where possible.

anon has no actual backing store, because it's content
is private; the modified data is visible only to the exist-
ing process. anon may be swapped out instead, when
available memory is getting smaller. Swap is optionally ,oae
configured by user to temporarily put these “anonymous” o
memories in running system. page

5.6 Physical page and segment manage-
ment

The primitive data structure to represent freely available
“physical” memory page istruct vm_page. When a
kernel boots, its image is copied by boot loader into the
main RAM. Kernel calculates available memories as seg-
ments asking firmware or lookup hardware configuration.UVM records a contiguous physical RAM segment as
After kernel allocates some persistent data structures (IK# segmentstruct vm_physseg. VM segment has an
page tables), it re-calculates available memories. Aderay of pointers to its VM pages. VM segment’s role
ter things are bootstrapped, kernel registers register thhag been limited, because most information of memory
freely available memory pages as segments to the VM.pages are in VM page. VM segment, however, will be
VM allocates VM pages for each freely available menmore important because it's the best data structure to store
ory pages. VM page is a metadata of freely memory pagéysical segments of device pages.
It keeps state of the associated page-sized memory. VM he author has extended the use of VM segment to store
page has mainly two distinct states; paging and H/W magevice pages too with newly added members meant for
ping. Paging is activity to read or write backing store dataanaged device pages. Note that we don't allocate VM
from / to the memory page. These pages are called ppgges for managed device pages, because we don’t need
cache. VM keeps such a state in VM page because I/Qrisst part of VM page which stores paging activity state.
considerably slow operation compared to memory opetastead we decided to allocate only H/'W mapping related
tions. information. The detail will be explained in later sections.
H/W mapping state information is about consistency of
memory page and relevant CPU cache. When a memeyr
page is mapped with CPU cache disabled, VM doesn’t
need to keep track of the memory page, because npmapis the abstraction layer of hardware’s physical mem-
cached access is volatile, stateless. Cache means a arpynanagement uniMU) handling.pmapdata struc-
of data put in the original location. It's often software’sures are devided into two parts; per-address-space struc-
responsibility to “manage” these copies and consistenttyres gtruct pmap), and per-page structurestfruct
This is also important where a single page is mappedvin_page md).
multiple address spaces too. UVM and its ancenstors hav@er-address-space data is mainly about page tables and
used the structure callesitruct vm_page md to store page table entries. pmap stores all address spaces’ H/W
“machine-dependent” part of VM page. Since H/W maprapping data in main RAM so that it can lookup the rele-
ping is done in machine-dependent code called pmap (eant page table entry and reload it into MMU, when MMU
plained later), we can assume H/W mapping related sthtes lost the page table entry. Kernel mappings that are not
is keptinstruct vm_page_md for now. never paged out (“wired”) are called unmanaged pages.

Figure 1: UBC and page cache

pmap

Page fault for unmanaged pages never enters UVM’s fainlg page cahe from the backing store using 1/0. Organiza-
handler, because unmanaged pages are wired, and dior't of page caches and backing store is specific to UVM
have any backing store. object (pager) types. Vnode pager maps UVM object's
Per-page data structure is used to keep track linear address to actual block address of storage devices
physical-to-virtual mapping (PV map for short) entries fdyy querying filesystem’s code/@P_BMAP()). Another
managed pages. This is because a) we want to lookilgM object pager is “aobj”. aobj uses swap as its back-
H/W mapping state using virtual address as a key, andify store. This means that its contents’ lifetime is only
pmap has to notify H/W mappings sharing a single pagturing the system’s uptime. aobj is useful for kernel data
There are many cases where a page is shared (commsetiiyctures that can grow, but doesn’'t need to be always
mapped) among multiple virtual addresses. If a shamrssident in memory.
page is changed somehow, pmap has to invalidate all th&/hen the faulting address is overlaid the upper handler
H/W mappings referring to the changed page, otherwisssolves the fault. Overlay data structures are designed to
those virtual addresses will see the stale cache data. be shared among multiple address spaces (VM map en-
tries) so that UVM doesn’t need to manage page chains
for privately modified data. UVM copies a privately mod-
ified page on-demand. This is possible because MMU

Kernel and processes running in Unix and other moddfdn catch protection fau_lt; VM register_s writeable pages
operating systems have virtual address space. Its behag@fbFeéad-only H/W mappings so that write access to those
can be roughly described in two stages; preparation di€S cause write protection faults. The fault handler
resolution. Virtual address space users prepare a “mgﬁows the orlgln.al protection (writeable) and the faL_JItlng
by associating their address space to a memory or Sc)({%%cgss) protgctlon. The fault handler belatedly copies 'the
object that can be abstracted by a linear address like E?é"—lt'_ng page into a new page, updates the H/W mapping
vices. Next, VM resolves actual accesses to memory8P0int to the new physical page address, then back to the
devices by catching MMU’s page access fault. The latfsPPed context. .)
is called page fault handling. The code doing paging fault "€ on-demand page copy to the overlay is called “pro-
handling is called fault handler. motion”. Promotion can happen both from the lower

Unmanaged page is easy to handle; what needs to-hg¥ object layer and the upper overlay layer. When a
done is only about filing MMU’s H/W mapping entries Promotion from the lower layer occurs, the fau_lt handler
0S doesn’t need to take anything into account other tH&#S 10 Prepare two data structures, amap, and its slot, VM
H/W mapping entries, because unmanaged pages hav&Hd™
cache, no backing store, no duplication of data, and no
inconsistency. .

Managed page’s fault handling needs more work; VI@ DeSlgn
is responsible to prepare the faulting page as a page cache))]
before returning back to the original execution conte®1 Device page handling in the fault han-
which is accessing the virtual address space. If the page dler

cache is found in memory, VM just re-enters the H/W

mapping entry to MMU. If the page cache is not in mem-"€ Piggest question to realizéP in UVM is how to
ory, VM invokes the pager to retrieve the relevant dafgPresent those memory-mappable device addresses in the

from the backing store using 1/O subsystem. This meaqylt handler.UVM has basi_cally 2 special fault_handling
that fault handling is potentially a very slow operation. A2Ses WBC, character device) and the generic handler.
variety of techniques are introduced to reduce the charfdé® POssible approaches were considred. One is to teach
to cause 1/0, which makes the fault handling code mdf@PY-on-write handling to the character device handler.
complicate. The other is to teach device pages to the generic handler.
UVM's fault handler is in a little odd shape because the After much consideratich we decided to go to the lat-
existence of special handlers where pages are not udfh|Pecause copy-on-write handling implemented in the
page cache of backing store objects. Other than thg&&€ric handler is very complex. Reimplementing it in
special handlers, UVM's fault handler is roughtly divide® device handler is not good too in that code is dupli-
into two parts, lower (UVM object) and upper (overlay)‘?ated-)) _
Atthe entry the fault handler checks if the faulting address!t turned out that teaching device pages to the generic
is covered by the overlay (amap). If yes, the handling handler, along with vnode pager, was not that difficult.
passed over to the upper handler. Otherwise the IOVW':"‘The author experienced tough time to made this decision (changed

handler.))) directions LOTS of times), because it was early development stage, and
Lower fault handler is responsible to retrieve the faulie didn't understand the code very well.

5.8 Fault handler

f/* N

* encode a device’s physical address
* into struct vm_page *

*/

#define PHYS_TO_VM_PAGE_DEVICE() ...

vm_map_entry

/*
* decode a device’s physical address

* from struct vm_page *
. fault */

handler
#define VM_PAGE_TO_PHYS() ...

vm_map_entry

vm_map

physical
address

’_1:
fault page caft
handler I::l

RAM

(main memory) !_I:
device| page
Figure 2: Page fault handler I

ROM

I/0 subsystem
filesystem
block device driver

This was done by abstracting theruct vm_page * ob-

ject. struct vm_page * object is a struct, whose ob-
ject is allocated at system boot time, one for each page
cache. It's the metadata of page cache; most importantly
it keeps the state of the matching page cache’s paging
state. In fault handing’s context, the only relevant infor-
mation instruct vm_page * is physical address of the
page cache.

backing store

Figure 3: Page cache vs. device page

6.2 Device page representation ivvVM

pager, and later passed to pmap(9) to register H/W
mappings. That is, thetruct vm_page * objectis
almost opaque to the fault handler.

To design the representation of device pagdd\M, we
identified the characteristic of device page and compared
it to page cache.

page cache device page e The struct vm_page * is dereferenced in only
mapping _ physical memory _ physical device limited number of places for related to paging activ-
paging yes no ities and some exceptions like wired and/or loaning.
attribute per-page homogeneous

metadata struct vm_page struct vm_physseg

In the current implementation, te@ruct vm_page *
Those are substantially different in that device page dag device page is a pointer with a magic value is encoded.

persistent (never involved in paging) and homogeneoi$is value is encoded by the vnode pager when the phys-

Considering these, we concluded that device page doegrat address of the page in the block device is known by

needstruct vm_page metadata like page cache. Thisalling PHYS_TO_VM_PAGE_DEVICE().

works because

e The fault handler allocates an array efruct
vm_page * on the stack. It's filled by the vnode

s bus_space_physload device() is for managed

/* register device memory for general use */ device spaces used as device page.
bus_space_physseg_t
bus_space_physload(Copy-on-write
bus_space_tag_t space,
bus_addr_t addr, bus_size_t size, UVM is so smart that it delays to allocate data segment’s
int prot, int flags); page cache when it's firstly written. This means that the
void device page mapped into a process seeing its data segment
bus_space_physunload(is replaced with a writable page cache (anona), while the
bus_space_physseg_t seg); virtual address stays the same address. With cache en-

abled, UVM is responsible to make the process see the
newly replaced data, by invalidating the cache content as-
sosiated for the mapped virtual address and page.

This is usually done in PMAP layer for the faulting

/* register managed device pages */

bus_space_physseg_t

bus_space_physload_device (
bus_space_tag_t space,

bus_addr_t addr, bus_size_t size, process whose address is being updated. The problem

int prot, int flags); is when the upper layer to which a page is promoted is
void shared among other processes. UVM has to tell PMAP
bus_space_physunload_device(layer that the physical page replacement affects other pro-

bus_space_physseg_t seg) ; cesses too. In order for PMAP to invalidate other pro-

J cesses’ cache, PMAP layer has to track what process’s
address is mapped to what physical address. This is called
as PV mapping.

6.3 Device physical segment Each PMAP implementation is responsible to PV man-
. agement. In reality, those implementations are classified
Managed device page into two categories:

Before device pages are introduced, UVM and. PMAP had, Have a global hash (x86).

no knowledge about mmap’ed character devices. UVM

0n|y managed physica| Segments of the System’s meme Associate those PV entries to the relevaniuct
ory (RAM). When PMAP is given a physical address to vm_page objects (arm, mips).

map, it looks up the managed physical memory segments]_

If the physical address is included one of those segments, he. former type works as is beca}use it doesn't make
PMAP considers the physical address as "managed”. y difference about added PV entries. The latter needs

erwise, PMAP assumes the address as "unmanaged” 5‘?{Hedy because we don't allocateruct vm.page Ob-

maps it as uncacheable page. This is not acceptabIeJBg[-S for device pages. Here we have two choices:

havior for XIP for performance. XIP pages should be o Gijve up shared amap.

cacheable like other executables, or performance would

be miserable. e Maintain PV entries for device pages separately.
To address this, UVM should provide information for

PMAP to judge agiven physical page is managed or ng}*hap everytime a process is forked. This overhead could

We added physical address segment data for those de)S'tgeconsiderably big in usual Unix use-cases where pro-

pages too. Now when PMAP is given a cesses are very often forked. It's also possible that some

)])] user want to run a highly simplified userland, where only a

Device physical segment registration few processes run and they don’t fork and copying amap

Device drivers have to register their memory-mappable f@L 8Very process is expected to have little impact about

gion to the VM, so that VM recognizes such a region affg€mory usage. . _
manages it. We'll introduce new functions as part of de- 10 maintain PV entries for device pages, we need some
vice drivers API. additional code and data in UVM. We implemented a very

simple, global hash lookup table. If PMAP is given a
physical address, and it's known to belong to a device
bus_space_physload() and page, PMAP looks up the physical address in the hash
bus_space_physload device() register a spec-and finds the PV entry header, walks the list and finds the
ified device space as part of VM aware mammatching PV entry.
aged space. bus_space_physload() is for man- The decision to make this simple was made because
aged device spaces used as page cache, samnch a operation is considered a rare operation. When an

Giving up shared amap means that we have to copy

10

struct vm_page *pg; uvm_fault() {

.. check_and_prepare() ;
+ if ('uvm_pageisdevice_p(pg)) { if (upper) {

pg->flags &= ~PG_BUSY; handle_upper();
+ 3} } else {

handle_lower();
}

}

XIP program is exec’ed, its sections are mmap’ed. Whenbandle_lower() {

a page in the data section is first written, the access is if (need_io)

trapped by the MMU and then the fault handler allocates , do_100);

a page cache, copies the data, replaces, and promotes it. i (needairoif;iie O

Once a page is promoted to anon, it's dealt with as a page enter_hw_m;gping() ; ’

cache, and no more XIP specific handling needs to |bey

taken account into. _ J
The another point is that device pages that are supposed

to be promoted are all in data sections. Those pages are

very likely to be placed continuously in the filesystem imrpe heart of this paticular task is to realize the responsibil-

age. Small hash size should not be problematic. ity of the fault handler, identify the relevant code, judge if
it’s related to device page, then insert conditions in places.

7 Implementation , _
Basic code flow of the UVM fault handler looks like

7.1 Physical Page and Segment Manager XXX. [_)evice page is handleq in. lower fault code, bg-
cause it belongs to vnode, which is one class of an object
The first thing is to define device page. We took gsager. The changes made in the lower fault code path are
approach which affects the least impact to the existifg skip either page cache specific behavior, or some spe-
code, while achieving the goal to makeruct vm page cial features like page wiring and page loaning. We gave
* opaque. The new definition eftruct vm page *is up wiring and loaning support because they rely on the

that: metadatagtruct vm_page *)to keep the those special
. . states.
e struct vm_page * points to either page cache or
device page.

7.3 Vnode Pager

In XIP, a device page in an executable file are mapped in

a file, which is represented as an object with a range. If

e struct vm_page * can be dereferenced only if it'sa user accesses the file, either mmap or read/write, a page
page cache. fault is triggered, and the fault handler traps it. Next the

vnode pager is asked by the fault handler to do two things
Thus we can leave almost all the code as is. Code pagrder:

that have to deal with device page are very limited; mainly
the fault handler, and some pager codes. Most changeg, If a set of pages is resident, return status
whose details are explained in the following sections, are,
to skip page cache handling if a given page is device page.
Typical code fragment looks like:

e Which typestruct vm_page * points to is queried
by a new functionpvm_pageisdevice p().

If a set of pages is not resident, address the file blocks
matching the requested pages, do I/O, then return sta-
tus

It's obvious that this scheme is to manage the complex-
7.2 Fault Handler ity of filesystems where:

The fault handler’s responsibility with respect to device e Files are put in a backing store. To read / write a
page is almost transparent; it traps a page fault, looks up file from / to there is very expensive task and slow.
the faulting page’s metadata, asks a pager to load the page, Which leads to introducing page cache. While page
then enter a H/W mapping. However, the fault handler has cache improves performance, it also brings more
become very complex to support UVM’s enhancements. complexity.

11

e Mapping of files are complex, because filesysterdecided to impose PMAPs that support XIP to learn a lit-
manage directories, long names, etc. tle knowledge about device page. The needed changes to
handle device pages are simple; only a few conditionals
However, careful investigation revealed that we can efhd look ups.
fectively omit most of these difficulties for XIP’ed device Another change here is PV maintainance. To support
files, by using a dedicated vnode pager for XIP. Its behayvM's delayed overlay copy feature, we have to track
ior looks like this: PVs for all device pages that can be promoted (data seg-
ment). PV management is implementation dependent.
e Map the requested region into page addresses, ti8me has a global hash, others siseuct vm_page. For
return them the latter case, we have to maintain PVs of device pages
somewhere. We chose to implement a generic global de-
Pretty much simple, because device pages always exigt page PV manager using a very simple hash code.
where CPU can map and address. No paging and I/O are
involved. Thisis enough for XIP whose filesystem is read-
only. _ 8 Other changes
Note, however, how page addresses and file blocks are
used. In the usual vnode pager, those mapping is useq,t .
I/O; pager queries to a filesystem the actual block addr%sg Filesystem

of a given page cache. In VM, a file is represented aggyr x|p implementation is independent of filesystem
I!near object. In fllesy§tems, the.real blocks of the file affpes. However, due to the design of NetBSD filesys-
likely to be scattered in the backing store. tem, we have to change filesystem mount code path so
For XIP, such page/block mapping are used to mapst XIP is enabled when mounted block device is ca-
as a H/W mapping. Which means that the XIP vnodgyple of XIP, and XIP mount option is specified. When
pager has to pass these addresses back to the fault iy stem mount code is passed XIP option, it queries the
dler, which in turn passes the addresses to PMAP, whigck device's physical address. If the block device sup-
handles the actual H/W mapping operation. And the onhgyts XIP, it returns the base physical address back to the

available way for the XIP vnode pager to return a set gfount code, and it's recorded in per-mount data structure.
addresses is to encode the address into the argument array

of struct vm_page *.
Another thing to consider here is handling of unall8.2 Block Devices

cated blocks. For the usual vnode case, the given pages

are zero-filled. For XIP, it's pointless to allocate zero'e¥/e developed a simple NOR FlashROM driver, because

pages for each unallocated blocks because of memb§tBSD has never had any Ml flash driver. This is a block

consumption. We made these blocks to be redirectedd@yice which supports the usual strategy interface. This is

a Sing|e dedicated zero’ed page. All unallocated b|ocﬂgeded because NetBSD accesses file's metadata via the

in all processes are mapped to this page. The XIP vndadfer cache interface, which is different than page cache

pager encodes the physical address of this zero’ed pag@/tich is integrated with VM.

the array as well as other blocks. XIP capable block devices have to provide the physi-
cal address of the device. This is queried and told to the
filesystem mount layer when the block device is mounted.

7.4 Kemel memory manager This is only a cache; to avoid the physical address each

As explained just above, we need a dedicated sinéjf@e when device pages are handled in the vnode pager.

zero'ed page. We allocate a page from pool's backend al-

locator ("pool page”). Pool page is good in that it returns

a page-sized, wired memory, and on platforms with dirc® Measurement
mapping, it's used (no KVA waste). Such a dedicated,

zero’ed page may be useful in other parts (like /dev/zepapologies.)

driver). We plan to merge these in the future.

7.5 Pmap 10 Consideration

It was considred to give PMAP a hint that a given phyS!tOl Memory Consumptlon
cal address is device page. We didn't do this, because we
didn’t want to revise PMAP API only for XIP. We instead To be done.)

12

10.2 Other implementations which in turn passes the pair to pmap. Device pages are
don't involve paging activity, of course.

Supporting super pages for device pages is not difficult.
Things become a little more complex when large pages
are used for page cache. You have to maintain freelists of
multiple sizes, split and/or merge pages, and teach all ker-
nel subsystems that assume the size of page is fixed. This
11.1 Faulthandler will result in involving huge amount of changes. Support-

We did a major clean-up of the UVM fault handler befor#g large pages only for device pages would be a good
applying the XIP change, because it had a very long, cofitep to start with for the moment.

plex function,uvm_fault ()4, which had too many things

to consider. We had to prove the changes made for XIP .) .

don't affect other parts badly, and also are placed in thd-2 Reliability and predictability

right placg. So we decided to ?p"‘ the big function Irnfé}elated to the previous topicss, one of the biggest prob-
smaller pieces, where context is narrower and responsl-

bility is clearer. After the clean-up, the XIP changes loo ms of UVM is "?‘C'.‘ of resource man.agement. UVM
checks resource limits at higher level like when mmap()

reasonable; they're only about skipping paging handlln|g’called. However, after it once allows usrs to their re-

and ignoring some special cases like loaning or Wiringouces UVM doesn’t check resouces available for the
Even after the clean-up, the fault handler is still compléx ' .) .

;) System to function. Most typically example is that UVM
and needs more improvements as follows:

always register H/W mapping entries for neighbor fault
_ without caring the available resouce at the moment. Note
Special fault handlers that H/W mapping entry registration potentially allocates

UVM has 4 fault handlers: tH&€mery to keep on-memory copy of the mapping infor-

As explained previously, : .) .)
eneric handler, and 3 special handlers (UBC handlg}at'on' The resulting system’s behavior has less reliable
g ' nd predictability, which is a critical problem for serious

character device handler, and Xen'’s priviledge fault ha%r_nbedded SvStems
dler). Those special handlers are responsible to do eveery- y '
thing which is done in the generic handler. The problem is

that the responsibility is ambiguous. There are many co .
fragments duplicate among these handlers. We should fez—'s Loaning

tablish a well-defined responsibility of the fault handle(yym has a kind of zero-copy send, called loaning. When
and the code performing it should be concentrated in,8er's data is copied to kernel, kernel subsystem checks

(To be done.)

11 Issues

single place. the size. If the size is big enough to compensate the cost of
preparing zero-copy rather than copying the buffer (which
Super pages needs no preparation). VM, the buffer is remapped

into kernel's address space, then the real pages are marked
Now UVM assumes that all pages are of the same Siz&read.only, then they're passed to kernel. The user is not

(PAGE_SIZE). Most processors support multiple paggjigwed to have to wait for the 1/0 to be done. If the user
sizes to reduce the amount of H/W mappings, and the ffgistakenly writes while the I/0 is on-goingVM catches
quency of page fault. IXIP, user program’s text seg-3 faylt to resolve the situation: allocate a new page, copy
ment is truely read-only, thus suitable to be mapped Rys gata, then install the newly allocated page to the user’s
large pages. Large pages are useful for other memogyyress space. Note that the user has a newly allocated
mappable devices like framebuffers, whose attribute is "H%ige than the original one which was loaned to the kernel.

mogeneous. In the XIP context, loaning of device pages could
_'I;]he autholr plans io change the gault randler to dq?el possible in that device pages are never paged out.
with not only struct vmpage * DUt alsO struct qpg nrohiem js that the loaning implementationURM

vnphysseg *; meaning that managed page belongs [0 s the page metadatefuct vm page) to track

either page cache (the former) or device page. DeVl&% loaning count (because one page can be loaned multi-

page fault ‘?‘C‘“a”y ne_eds “offset” to_o. When afau!t IS tr jle times). To address this problem, the loaning code has
gered against the middle of a device page, device pager. i<od to not use thecruct vm_page * object. That

returns the faultlng FjeV|?fe pabge kas ahse?mlemﬁlﬁcgl should makes sense considering that loaning is not a per-
vn_physseg *) and its offset back to the fault handlerg;gion: state: its lifetime is limited to the activation of I/O.
“pctually uvmfault() is an alias macro of Loaning is also a rare operation; only big data pages are

uvm_fault_internal () which has the real code. loaned.

13

11.4 Wiring paper. Thus this is reserved as a future work.

NetBSDwires (pin-down) pages in some unclear situa-))
tions. Those uses should be investigated one day, but 44-7 Dynamically linked programs

Ior(’;urr:]aetzllqynleft '&3,& regr{eb?dtjhizeeg?\’: Zv'gnga:rﬁﬁynamically linked programs are executed with help of
W Ings ' IS to prever pag CNhe dynamic linker which reads the program header, loads
to paged out (pin-down). This is a straight-forward 'de@wmap()’s) the given program’s sections, then reads the

considgring the .COSt of doing /O t_o retrieve.a page fro mbol table to resolve unresolved symbols; which means
a backing store is not acceptable in some situation. P S dynamically linked programs’ image copied onto

wiring is used. . e oo
: . . memory are potentially modified by the dynamic linker
The another is to forcibly mark a H/'W mapping to b%efore %/he rezfl progra% execution s){arts. Y

pgrmanen; |'n an MMU unit. This is a rather odd oper- However, it's possible to avoid modifications of read-
ation. Unix's virtual memory management has had By text segments by making all the code referencing ex-
assumption that the number of the H/W mapping entri{as y 9 y 9 9

registered in an MMU is limited. The kernel instead kee grnal symbols lookup the indirect symbol lookup table.

mapping information, which is needed to rebuild a H/\Y/ is means that the code (text) segment is not modified,

mapping entry, in local memory. In other words, H/V\l?Ut only the reloc is. Such a program can be generated

.) . with compilers and linkers. Dynamic linkers also need
mappings in MMUs are assumed to be never persistent, o
. o . : . -~ thanges to handle those relocs. These are specific to ar-
The H/W mapping wiring violates this basic assumption;, . . ! :
X . . chitectures and beyond this paper. We're planning to con-
XIP and device pages in general are wired as never re- : .
e) vért all architectures to support such a feature in the fu-
tired into a backing store. However, because of the cqn-

fusions of "wiring” handling described abvX|P avoids ure.
wiring where possible by telling the caller that the wiring

request was failed. 11.8 Kernel XIP

] o Kernel is already almosXIP, except that the details are
11.5 Filesystem optimization very machine-dependant, and kernel can’t apy-on-
(To be done.) write. Users need to map the kernel text ROM range at the

right address. This has to be done in either boot loaders
) or machine-dependent early initialization code. In either
11.6 Memory disk support cases, this is beyond the scope of this paper which deals

NetBSD has a pseudo block device called md(4), whit¥jth machine-independent parts.
emulates backing store using kernel memory. The content
of md(4) is initialized either statically (mdsetimage(8)) o11.9 Mount option handling
dynamically (typically by boot loader, or kernel’s early
boot code) before it's being mounted. When a prograf$ already explained, ouXIP implementation is neutral
in a filesystem mounted on an md(4) block device is e filesystem. However, we lack a consistent way to pass
ecuted, the kernel allocates page caches then fills th@@unt options from mount commands to filesystems. We
by reading the backing store, that is the md(4)'s memofave to change the mount option handling code in every
This means the kernel has two copies of the programfitgsystem to be used fofIP. There is an on-going work
memory. If XIP is applicable to this situation, we couldo centralize such code in one place.
omit page caches and save memory usage.
The problem is that the current implementation of XIR1.10 Zero'ed page handling
assumes device pages, which are never part of kernel
memory. They're exclusive. The current md(4) implexXIP is not the only users who need a zero’ed page in the
mentation uses kernel memory as backing store, whigtrnel. zero(4) is a pseudo device which is shown as
contradicts the assumption made by XIP. A possible s6iev/zero and read as Os. It fills a given user’s buffer
lution to this is to exclude md(4)’s backing store memonyith Os. This can be efficiently processed if the kernel has
region from kernel's memory. Thus kernel is not awa page-sized region filled with Os.
of the md(4) memory region, and it recognizes the regionAnother use is, likeXIP addresses, filesystem in gen-
as "unmanaged”. Later if the region is registered as deral encounters unallocated blocks, which should be seen
vice physical segment, kernel will recognize the region ssusers as 0sNetBSDfills pages caches of unallocated
"managed device pages”. blocks with 0s by callingremset () using the temporar-
The solution describe above needs total rewrite of the allocated kernel address space. (This is one of the
md(4) driver and other related tools, which is beyond thisasons the kernel has to allocate a kernel virtual space

14

(pager map ()) while handling 1/O, even for direct 1/0.) 1 3 Acknowledgement
This should be rewritten to use the pre-allocated zero’ed

page to avoid access to user's buffer via remapped kerpeltt Thomas<matt@3am-software.com> kindly sug-

address space. gested this topic, gave me the overall development di-
As of writing this, NetBSDhas no consistent way torection, and pointed out many failures of my design.

manage such a pre-allocated zero’ed page. We're planiguck Silvers <chug@chuq.com> taught me UVM /

to address this soon after théP is merged into the trunk. UBC behavioural details and the expected problems

of this work. Noriyuki Soda<soda@sra.co.jp>,

Antti Katee<pooka@cs.hut.fi>, and Masanari Tsubai

<tsubai@segv.jp> gave me many useful comments in

While our XIP implementation needs nothing special tdiscussions at AsiaBSDCon 2009 and/or Japan NetBSD

develop aXIP capable system, the interface of creatingldsers Group Annual Meeting. I'd also thank everyone

crunched programis a little inconvenient to use. It was d&ho encouraged me on ICB.

velopped mainly for creating installation media, like flop-

pies, where available size of images is very limited. T

infrastructure to build crunch binaries is a mixture of BS eferences

make and AWK scripts, which is totally different than th

one to build usual, non-crunched programs. The hel;f%

scripts parse a user’s configuration¥iend generate glue

makefiles on-the-fly, which make programs read and de-

cide how to build a special program ready to be linked

against a final crunched program. The build procedure

is very unclear. It also means that users have to majgy Chuck Silvers. Ubc: An efficient unified i/o and mem-
tain build procedures of crunched programs in scattered oy caching subsystem for netbsd USENIX Annual

places. Technical Conference, FREENIX Tragkages 285—
Crunch binary is actually something like a collection 290, 2000.

of static libraries (archives); programs are compiled as a
statically linkable object, with unnecessary symbols af@ Soren Welltéfer. Application execute-in-place (xip)
hidden or renamed so that they won't conflict with other ~with linux and axfs. sep 2009.
programs which will be crunched together into a single
crunched program.
This situation could be simplified by moving the knowl-
edge of the build procedure into a single place, that is, the
system wide make file templateéagr/share/mk). The
problem is where to install intermedia object files; they
are neither usual programs nor static libraries. If we once
establish a consensus how to handle these files, the crunch
build procedure would be done in almost the same way as
the default build procedure for a collection of individual
programs and libraries.

11.11 Development environment

} Charles D. Cranor and Gurudatta M. Parulkar. The
uvm virtual memory system. IATEC '99: Pro-
ceedings of the annual conference on USENIX An-
nual Technical Conferengpages 9-9, Berkeley, CA,
USA, 1999. USENIX Association.

12 Conclusion

We have successfully implementédP into the UVM
without losing any existing functionality nor any major
code impact.UVM's 2 layered representation avoids un-
necessary data copy across proccess I0BC addresses
data consistency ofmap() and I/O of device pages.
While designing all the issues we've realized many ex-
isting design issues ilVM and found some interesting
ideas which will benefit contexts beyoXdP.

5The configuration is called a "list” file, meaning we don’t know how
to call it other than the file name itself.

15

