
Tales from the North
System Administration of a Geographically
Disperse Network

Dwayne Hart
dwayne.hart@gmail.com

Background

Over five years ago I joined a Northern Internet Service
Provider (ISP) in Yellowknife, NWT, Canada providing high-
speed internet, email, website hosting, and other
specialized network services to approximately 50
communities located within the Northwest Territories and
Nunavut. The satellite headend was located in Ottawa.

Typical Site Configuration

● Satellite equipment
● Local Area Network equipment (router and switch)
● Wireless network equipment
● Two or more physical servers

Focusing on Remote Sites

Originally each site ran a full install of FreeBSD 5.2.1 on the commodity
hardware. As the server hardware failed. The entire unit was replaced with
reserve systems when that option was depleted new systems were purchased.

Unfortunately, the components comprising these newer systems were not
supported by FreeBSD 5.2.1. Causing a major headache. How do we run the
same software stack on a newer version of FreeBSD?

The solution was to create two thin jail instances per site and bundle certain
services together. For example, sendmail and DNS were grouped together
while LDAP, DHCP and our network usage software stack were bundled
together.

Troubleshooting

Not all platforms were running the same OS version. If a
system or jail encountered an issue how do we try to
diagnose the issue? We were lacking debugging/analyzing
applications.

To get around this I started to think about how do we take
all our remote heterogeneous systems and bring them
inline?

The solution I came up with was to implement a Diskless
FreeBSD server on both of the community servers. Each
system had DHCP, TFTP and NFS service configured.

The NFS service offered up a share that was created
containing a custom built FreeBSD tarball.

Then in turn. One of the servers became the application server
and hosted the community jail instances. While the other
machine was configured to boot off its network card and act as
a Diskless client.

At which point, I carved up the disk with a new layout and
UFS2 file systems. Then used the tarball to install the custom
FreeBSD OS. After which the client is rebooted. The build
process is reversed and the jails are migrated to the newer OS
platform.

TFTP

Even though a base version is installed by default on all FreeBSD systems,
This instance was replaced with tftp-hpa from ports. To make use of the bug
fixes and the eventual use of gpxeboot, memdisk from the SYSLINUX project.

/etc/inetd.conf

tftp dgram tcp wait root /usr/local/bin/tftp tftpd -p -s -B 1024 --ipv4
/tftpboot

/etc/rc.conf

Network daemon (miscellaneous)
inetd_enable="YES"
inetd_flags="-wW -C 60 -a 192.168.1.2"

DHCP
Made use of a stock build of isc-dhcpd (server) from ports

/usr/local/etc/dhcpd.conf
subnet 192.168.1.0 netmask 255.255.255.0 {
 #use-host-decl-names on;
 option subnet-mask 255.255.255.0;
 option routers 192.168.1.254;
 option broadcast-address 192.168.1.255;

 next-server 192.168.1.2;

 ### Host:volterra
 host 192.168.1.20 {
 hardware ethernet 00:1e:4f:f0:69:e7;
 fixed-address 192.168.1.20;
 filename "pxeboot-6.2-i386";
 option root-path "192.168.1.2:/diskless/fbsd62-i386";
 }

NFS

Basic configuration of the NFS service was put in place.

/etc/exports

/diskless -alldirs -ro -maproot=root 192.168.1.0/255.255.255.0

/etc/rc.conf
Network daemon (NFS): All need rpcbind_enable="YES"
rpcbind_enable="YES"
nfs_server_enable="YES"
nfs_server_flags="-t -u -h 192.168.1.2 -n 15"
mountd_enable="YES"
mountd_flags="-r"

Debugging One Step
Further
Download the latest version of the SYSLINUX project from kernel.org. Then
copy the following binaries to the root of your tftp directory.

chain.c32, gpxelinux.0, ldlinux.c32, libcom32.c32, libutil.c32, memdisk, menu.c32, reboot.c32,
vesamenu.c32

Create a directory called pxelinux.cfg and a file called default containing the
following content...

ui menu.c32
menu title Utilities

label memtest
 menu label Memtest
 linux memdisk
 initrd images/memtest86.iso
 append iso raw

label reboot
 menu label Reboot
 kernel reboot.c32

Create a directory called /tftpboot/images and store whatever
ISO you wish to use in there.

You will then change the string 'filename "pxeboot-6.2-i386";' to
'filename "gpxelinux.0";' in /usr/local/etc/dhcpd.conf.

Perform a sanity check of your dhcpd.conf file to ensure that
you did not busted. If correct, restart the service reboot your
client machine and test the machine's memory using the latest
memtest ISO.

Core Infrastructure

Seeing that the jail implementation worked out in the remote communities we
made use of the same framework so that in the event of a server failure we
could launch the hosted jails on another platform.

Once the remotes were updated to a standard version of FreeBSD. The same
techniques were used to rebuild the core servers located at the satellite
headend.

Interesting Notes

● By deploying a different custom FreeBSD tarball. We can either setup a
new NFS share and in the event we needed to rebuild the server with
either OS instance. Or replace the previous share with the newer material.

● By slicing up the hard drive to contain three slices. The first two can be
used to contain the system's OS while the third can be used to store our
jail instances. We can then use the command "boot0cfg -s 2 ad0" to
instruct the boot manager to boot from the second slice.

● The content contained in the custom FreeBSD tarball was turned into an
ISO. This could then be used as a building block.

● A build/patch server was created in order to keep in-line with security
notifications from FreeBSD.

Future Work

With the knowledge and experience I had garnered from this position
administering FreeBSD systems. I have been able to quickly deploy FreeBSD
systems in my current position as a systems administrator for the Department
of Mathematics & Statistics at MUN.

I have setup one server based on FreeBSD 9.1-RELEASE amd64 where I have
installed FreeBSD 8.3-RELEASE amd64 in an NFS share and have booted
three client machines off this system. Two as compute nodes using iSCSI
targets for data store and to use one of the targets to implement a memory
backed swap space. The remaining node I setup a local ZFS mirror to store
backup data.

The same FreeBSD server has a second disk with ZFS installed and offers up
NFS shares for various research groups and an iSCSI target for a dedicated
RedHat compute node to store certain data sets.

Questions?

