
Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Forensic Timeline Analysis of ZFS Filesystems

Dylan Leigh

Supervisor: AProf. Hao Shi
Coordinator: Prof. Xun Yi

Centre for Applied Informatics, College of Engineering and Science

Victoria University, Melbourne, Australia

BSDCan 2014 - 16 May 2014
http://www.bsdcan.org/2014/schedule/events/464.en.html

1 / 48 Dylan Leigh ZFS Timeline Forensics

http://www.bsdcan.org/2014/schedule/events/464.en.html

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Outline

1 Introduction to Timeline Forensics and ZFS
Digital Crime Scene Investigation
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

2 ZFS Internal Structures
Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

3 Discussion & Demonstration
Observations & Issues
Demonstration
Future Work

2 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Computer Forensics
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

Digital Crime Scene Investigation
AKA Computer Forensics

Detective: �I need to know what �les were created, modi�ed,
deleted and accessed over time�.

Timeline Analysis

Timestamps from Filesystem

Internal File Metadata

Registry

Logs

�Super Timeline� from many sources

Timestamp Falsi�cation

Criminal: �I should change the modi�cation times on these �les ...�

4 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Computer Forensics
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

Detecting Forged Timestamps

Cross-check all sources of timestamps

Automated by �Super-timeline� tools

Disadvantages

Time consuming
Other sources can be forged as well
Not possible to corroborate logs, registry etc with all �les

Filesystem internal structures available for all �les

Existing forensic tools do not handle ZFS disks

5 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Computer Forensics
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

Zettabyte File System

ZFS

All disks added to a
�pool� of storage

Filesystems created as
required from the pool

Many advantages over
traditional volume-based
disk management

Need for new forensic
tools

7 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Computer Forensics
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

ZFS Internals

Everything is an object in a tree

Redundant copies of objects
across di�erent devices

Checksums in pointers allow
self-healing

ZFS manages inter-object
dependencies

8 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Computer Forensics
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

ZFS Transactions

All writes to a ZFS pool are COW, atomic transactions

Writes batched in a Transaction Group

Identi�ed by Transaction Group ID (TXG)
Written to disk every 5 seconds (typically)

New objects are written from the bottom up

Linked by �Block Pointer� structures,
which include 1-3 references

Finally a new �Uberblock� is written at the top of the tree

4 redundant sets of 128 uberblocks,
2 at start & end of each device

9 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Computer Forensics
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

Digital Forensic Implications of ZFS
Nicole Lang Beebe, Sonia D. Stacy, and Dane Stuckey

Digital Investigation, Elsevier, 2009

Overview of ZFS forensics

Advantages (COW copies; temporal state awareness...)

Disadvantages (compression; dynamic sizes...)

Based on examination of the documentation and source code

No empirical analysis of actual �le systems

No speci�c techniques or guidelines for technicians

11 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Computer Forensics
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

ZFS Forensics Research

Data Recovery - Max Bruning

"ZFS On-Disk Data Walk (Or: Where's My Data)."
OpenSolaris Developer Conference, 2008

�Recovering removed �le on zfs disk." (website), 2008.

�Zettabyte File System Autopsy�

Andrew Li, Macquarie University, 2009

ZDB Enhancement for locating known data within a disk

�Analysis and Implementation of Anti-Forensics Techniques on ZFS�

Cifuentes, J. and Cano, J. Revista IEEE America Latina, 2012

12 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Computer Forensics
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

Aim

Determine what timeline information can be obtained from
ZFS internal structures

Conduct empirical studies based on real �lesystems written to
disk

Determine techniques for verifying �le timestamps and
detecting forged timestamps

Provide a research basis for developing new forensic timeline
tools for ZFS

14 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Computer Forensics
The Zettabyte File System
Existing ZFS Forensic Research
Our Research Project

Experiments

Create ZFS pools with 1-9 disks

�at, mirror, mirror pair and RAIDZ con�gurations where
applicable

Simulated �le activity based on typical corporate network
storage statistics

Data from "A �ve-year study of �le-system metadata.",
Agrawal, Nitin, et al., ACM Transactions on Storage, 2007
Also examined own systems as case studies

For each pool con�guration:

Control (No tampering)
System clock reverted while a �le saved
File timestamp modi�ed with touch

Data saved using ZDB (ZFS Debugger) every 30 minutes

15 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Uberblocks

Written every 5 seconds under steady load

More frequent under heavy load or for synchronized writes

Extracted per-device, each device contains 4 identical sets of
128 uberblocks

zdb -P -uuu -l /dev/<device>

Sets may di�er between top-level virtual devices

Each Uberblock includes a Block Pointer to the Meta Object
Set, Transaction Group ID and the time it was written

17 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Uberblocks: Example

Uberblock[73]

magic = 0000000000bab10c

version = 28

txg = 1737

guid_sum = 4420604878723568201

timestamp = 1382428544 UTC = Tue Oct 22 18:55:44

2013

rootbp = DVA[0]=<0:3e0c000:200>

DVA[1]=<1:3f57200:200> DVA[2]=<2:3593a00:200> [L0 DMU

objset] fletcher4 lzjb LE contiguous unique triple

size=800L/200P birth=1737L/1737P fill=42

cksum=15ffed59a7:7e9c9c5...

Uberblock[74]

...

18 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Uberblocks: Forensic Uses

Link a TXG to the time it was written

Detect forged timestamps if the timestamp on the �le and
uberblock do not match (within 5 sec) for the same TXG

Consecutive Uberblocks have increasing TXG and timestamp

System clock alterations will be visible if they last longer than
5 seconds

Disadvantages

Uberblocks are relatively easy for attacker to tamper with

At the top of the ZFS hash tree

Typically last only 10.5 minutes

19 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Uberblocks: Gone in 640 Seconds

Uberblocks only last 635-640 seconds
in most cases (5sec×128)

Pools with 4 or more top-level vdevs
retain uberblocks for longer

A TXG may not a�ect all vdevs
At most only 2.4 hours in
experiments

Thus uberblocks are most useful in a
�Dawn Raid� scenario

Detection in 50% of experiments with
forged timestamps (despite collecting
data every 30 minutes)

20 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

ZFS Datasets

Each �lesystem stored in a Dataset (object set)

Datasets may also be Snapshots, Clones, ZVOLs
Each ZFS Pool may have up to 264 datasets

Metadata extracted per dataset

zdb -P -dddddd -bbbbbb <poolname>/<dataset-name>

List of all objects and their block pointers in the dataset
Includes dataset-speci�c objects e.g. Delete Queue
Directory objects include a list of �lenames and the ID of the
corresponding File object
File objects include attributes and BPs pointing to the �le data

22 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

ZFS Plain File (simpli�ed)

Object lvl iblk lsize %full type

15417 1 16384 67072 100.00 ZFS plain file

path /tampered-file

uid 0

gid 0

atime Tue Oct 22 17:55:39 2013

mtime Tue Oct 22 17:55:40 2013

ctime Tue Oct 22 18:58:00 2013

crtime Tue Oct 22 18:55:39 2013

gen 1737

mode 100644

size 66566

parent 4

Indirect blocks:

0 L0 DVA[0]=<2:353c200:10600> [L0 ZFS plain file] single

size=10600L/10600P birth=1737L/1737P ...

23 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Object Number

All dataset objects have
increasing ID numbers

If the creation time of a
�le is falsi�ed, the object
numbers will show the
true order

Successful in all
experiments involving
�le creation time

Cannot be used to detect
a falsi�ed modi�cation
time

24 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Generation TXG

File and directory objects
store the Transaction
Group ID when they were
created (�Gen�)

Can be used like Object
Number to detect an
out-of-order creation time

Successful in all
experiments involving
�le creation time

Cannot be used to detect
a falsi�ed modi�cation
time

25 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Block Pointers

Block pointers contain the TXG in which they were written

This can be cross-referenced to a TXG from other �les,
directories, or uberblocks

Need 5 seconds of tolerance for each Transaction Group
Can be used to detect falsi�ed modi�cation and creation times
Successful at detecting tampering in all experiments

File data BPs can provide past modi�cation information for
larger �les

BPs to blocks written in prior transactions (and not changed)
will contain prior TXG
E�ective for large �les which are updated in small, isolated
parts (e.g. VM images)

27 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Large File Example

Object lvl iblk lsize %full type

57296 2 16384 262144 100.00 ZFS plain file

...

size 158599

...

Indirect blocks:

0 L1 DVA[0]=<1:202c7400:400> DVA[1]=<2:2183e000:400>

[L1 ZFS plain file] double size=4000L/400P

birth=15853L/15853P fill=2

0 L0 DVA[0]=<1:24409600:20000> [L0 ZFS plain file]

single size=20000L/20000P birth=15464L/15464P fill=1

20000 L0 DVA[0]=<1:24a7da00:20000> [L0 ZFS plain file]

single size=20000L/20000P birth=15853L/15853P fill=1

28 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Block Pointer Plots

(5 disk RAIDZ3, No tampering, 24 Hours)

29 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Space Allocation

Virtual Device

Modi�ed Round Robin algorithm to choose device to write

Switches devices every 512k

Metaslab

Vdevs divided into equal regions called �metaslabs�

ZFS tries to �ll metaslabs before using new ones

Spacemap

Free space metadata for each metaslab stored in a �spacemap�
object

31 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Virtual Devices

The round robin algorithm means that the order of object
writes is re�ected in the vdev it is written to

Theoretically this could be used to verify timestamps

In practice, transient �les prevent this from being useful to
verify timestamps or detect tampering

Could possibly be useful in write-only workloads to show that
there was unknown activity between known writes

32 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Metaslabs

Extracted per pool:

zdb -P -mmmmmm <pool>

One set of metaslabs for each top-level virtual device

Each metaslab has a spacemap with many alloc/free segments:

metaslab 0 offset 0 spacemap 33 free 107904000

segments 3259 maxsize 256512 freepct 80%

[0] ALLOC: txg 3857, pass 1

[1] A range: 0000000000-0000000400 size: 000400

[2] A range: 0000002000-0000002c00 size: 000c00

...

[4792] FREE: txg 3857, pass 2

[4793] F range: 00000cae00-00000cba00 size: 000c00

[4794] F range: 000025ac00-000025b800 size: 000c00

...

33 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Spacemaps

Spacemaps are log-structured lists of free blocks

�Condensed� when alloc/free entries which cancel out are
detected
Condensation leads to many recent segments and a long tail of
older ones

Each segment stores the TXG when it was written/condensed

Probably later than the TXG when the space was allocated!

Transient �les and condensation prevent them from being
forensically useful, even for recent �les

Cannot be used to detect tampering
Can sometimes be used to verify the minimum age of �les

34 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Uberblocks
Datasets and File Objects
Block Pointers
Spacemaps

Spacemaps: Longevity

Median age of a segment
was 72.3% of the current
TXG

Pools with Mirror and
Raid-Z vdevs have earlier
outliers

E�ect increases with
increasing redundancy

Highly dependent on
workload and other factors

35 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Observations & Issues
Demonstration
Future Work

Summary of Results

Detection
Structures

Uberblock BP TXG Gen TXG Obj. No. Spacemap

Forged Mtime Sometimes Yes No No No

Forged CRTime Sometimes Yes Yes Yes No

Past Mtime No Sometimes No No No

Key Points

TXGs from File Object Block Pointers are most useful structure for
timeline forensics

Can sometimes �nd previous modi�cation times

Forged creation time easier to detect than forged modi�cation time

Uberblocks only e�ective if collected soon after tampering

37 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Observations & Issues
Demonstration
Future Work

False Positives

Timestamp mismatches can be caused by normal events as
well as anti-forensics

Clock corrections will a�ect all timestamps

Correcting a fast clock will cause out-of-order false positives

Occurred in 2/76 experiments

Innocent userspace changes of timestamps

Unpacking archives with timestamps preserved
Copying/moving �les with timestamps preserved

38 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Observations & Issues
Demonstration
Future Work

Falsi�cation of Internal Data

A determined adversary could tamper with internal metadata
as well as the �le timestamps

Uberblocks are relatively easy to modify

Tampering of objects/BPs also requires recalculating
checksums for all parent BPs

Object Number and Generation TXG could be easily changed
providing there is a viable false ID/TXG to replace it with
Block pointer TXG could also be changed with more care to
keep order of TXG consistent
Spacemaps may be more di�cult to alter, although the
alteration would probably be indistinguishable from
condensation

39 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Observations & Issues
Demonstration
Future Work

Demonstration

zpool create ...

41 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Observations & Issues
Demonstration
Future Work

Future Work: Next Steps

Survey

Real data would be better than simulated �le activity

The next phase of this project is to conduct a survey of real
ZFS pools from production systems

Volunteers submit anonymized ZDB data
(paths and names removed)

Automation

Python scripts used for experiments

Develop practical timeline utility

Work in progress

43 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Introduction to Timeline Forensics and ZFS
ZFS Internal Structures

Discussion & Demonstration

Observations & Issues
Demonstration
Future Work

Future Work: More Structures to Examine

Per-dataset objects (Master Node, Delete Queue, ...)

ZFS Intent Log

Snapshots

Meta Object Set

Past object trees from previous uberblocks

Old blocks on disk no longer referenced...

44 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Conclusion

Future Work: More Pools and Workloads

Longer running times, larger disks, more disks...

ZFS Features: Compression, Deduplication ...

Dedicated Log and Cache devices

Other workloads

Desktop, Home NAS, Webserver, VM host, Databases...
Pools with many datasets

Pools providing ZVOLs for other FS

45 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Conclusion
Summary
Thanks and Acknowledgements
Contact Details and Questions

Summary

Multiple ZFS Structures can be used to corroborate
timestamps and detect falsi�ed timestamps

Block Pointers in File Objects are particularly useful and can
sometimes be used to determine the time of previous
modi�cations

Clock corrections and other normal behaviour could appear to
be deliberate tampering with timestamps

More work needs to be done to examine other ZFS structures,
con�guration options and systems with varied workloads

46 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Conclusion
Summary
Thanks and Acknowledgements
Contact Details and Questions

Thanks and Acknowledgements

Thankyou

BSDCan for funding my travel and providing me with this
opportunity to speak to the BSD community.

My supervisor, coordinator and other VU sta� for their invaluable
guidance and assistance.

My wife for her constant patience, support and understanding.

47 / 48 Dylan Leigh ZFS Timeline Forensics

../vu.jpg

Conclusion
Summary
Thanks and Acknowledgements
Contact Details and Questions

Contact Details and Questions

Dylan Leigh

Email: research@dylanleigh.net
Web: research.dylanleigh.net

Formal Paper and Quick Reference

http://www.bsdcan.org/2014/schedule/events/464.en.html

Questions?

48 / 48 Dylan Leigh ZFS Timeline Forensics

http://research.dylanleigh.net
http://www.bsdcan.org/2014/schedule/events/464.en.html

	Introduction to Timeline Forensics and ZFS
	Digital Crime Scene Investigation
	The Zettabyte File System
	Existing ZFS Forensic Research
	Our Research Project

	ZFS Internal Structures
	Uberblocks
	Datasets and File Objects
	Block Pointers
	Spacemaps

	Discussion & Demonstration
	Observations & Issues
	Demonstration
	Future Work

	Appendix
	Conclusion

