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Application 
Compartmentalization
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• Compartmentalization decomposes software into isolated components.

• Each sandbox runs with only the rights required to perform its function.

• This model implements the principle of least privilege.
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Capsicum

• Hybrid capability model: OS APIs for 
application compartmentalization

• Out-of-the box in FreeBSD10.0

• Growing number of FreeBSD 
programs are using Capsicum out-of-
the-box: tcpdump, auditdistd, hastd, etc.

• Casper framework offers services to 
sandboxes (e.g., DNS, socket server)

• Google has published a Linux port
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From compartments to 
objects

• Sharing requires pointers 
with enforced bounds and 
permissions

• Can we use this 
mechanism for every 
pointer?
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CHERI capabilities
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• Unforgeable

• Monotonic length and permissions

• Tagged memory protects capabilities 

• Checks apply only on dereference

Base	  [64]

Length	  [64]

Permissions	  [32] Type	  [24] Reserved	  [8]

Offset	  [64]
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C language support
Hybrid:

• __capability annotations on pointers

• Small changes in the C runtime

Pure:

• Compiler compiles code with all pointers are 
capabilities

• Small application changes to maximize memory 
safety

7



CTSRD

Binary compatibility
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The prototype CPU

• 64-bit MIPS-compatible ISA (≈R4000)

• CHERI ISA extensions

• Runs at 100MHz on FPGA

• Full software stack
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CheriBSD supports 
CHERI

• Platform support (BERI CPU)

• Support for new ISA features

• Infrastructure for compartmentalization

• Custom and adapted applications

• Build system improvements

11
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Lots of deltas!

12



CTSRD

Kernel changes
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Component Files 
Modifed

Lines + Lines -
Headers 19 1424 11

CHERI initalization 2 49 4

Context managment 2 392 10

Exception handling 3 574 90

Memory copying 2 122 0

Virtual memory 5 398 27

Object capailities 2 883 0

System calls 2 76 0

Signal delivery 3 327 71

Process monitoring/debugging 3 298 0

Kernel debugger 2 264 0
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libc changes

• Capability aware memcpy, memmove, etc

• Explicit capability forms of mem* and and 
str* functions (memcpy_c, 
memcpy_c_fromcap, memcpy_c_tocap)

• Fixing optimizations based on assumptions 
about pages

• Split of syscalls and libc (coming soon!)

14
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libcheri

• Compartment object management

• Type allocator

• Loader and runtime linker

• System call implementation for 
compartments
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/usr/libcheri

• Similar to /usr/lib32

• Builds all libraries in pure-capability mode

• Allows for pure-capability programs on a 
MIPS64 system

16
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Demo Applications
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Tcpdump changes
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Infrastructure

• Build system improvements

• Unprivileged builds

• Per-program (and per-file) compiler 
replacement

• Strip during build, not at install

• …
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Early days: Perforce
Cons

• No public access

• Hard to add users

• Not ideal for CI

• Minimal offline support

21

Pros

• FreeBSD infrastructure

• Good merging

• Easy to maintain stacked 
branches

• Familiar to team
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Perforce ⇒ Github

• Switched October 2013

• Lost some history granularity

• Easy public access

• Trial by fire with git-at-scale
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Github model

• Forked freebsd/freebsd repo

• Weird effect: forking CheriBSD seems to 
fork FreeBSD

• All commits to master branch

• Merge changes from FreeBSD upstream
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Merging: first attempt
git fetch upstream

git merge upstream/master

• Merges everything at once!

• Works

• Rebase usually produces insane results

• Don’t lose the push race!
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Oops, we merged a bug!
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Bisect is useless
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C1 C5 C3000

C3001
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mergify

• Merge one commit at a time

• Mostly true assumption that commits are 
complete features

• Stream of small changes merging upstream 
and cheribsd

• Bisect is possible
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mergify

• Problem: merging tcpdump went weird

• Vendor commits have the empty repo as 
a common parent with master!

• Solution: merge only direct commits

28
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mergify Demo
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Git rebase is broken

• Changes are reapplied in order

• Including merges from vendor branches!

• mergify doesn’t fix this (yet)

• May be an issue with using git wrong or git-
svn not handling vendor branches well
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mergify TODOs

• rebase mode

• bisect mode

• check that things build/work at key points
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Upstreaming
• Reduce merge conflicts

• What to upstream?

• Drivers for things people can use

• General infrastructure

• Infrastructure shared by multiple external 
consumers

• Low impact things that are conflict prone

32
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What we’ve upstreamed

• FDT support for MIPS

• Drivers and driver improvements

• Working floating point support for MIPS

• Boot loaders for MIPS

• Unprivileged builds and installs

33



CTSRD

Related Upstreaming

• Improvements to external projects:

• QEMU: FreeBSD MIPS64 usermode

• MIPS64 and ARM packages!

• Clang/LLVM: MIPS64 fixes

• LLDB: FreeBSD improvements, MIPS64

• Tcpdump: better compartmentalization 
interfaces

34
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Releases

• Internal snapshots

• Restricted releases

• Public releases: http://cheri-cpu.org/

• Shared make-based build infrastructure
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http://cheri-cpu.org/
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Tips for developers
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http://xkcd.com/303/ (CC BY-NC 2.5)

http://xkcd.com/303/
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Tip 1: Use a big machine

• Enough RAM to hold source and output in cache

• 128GB is enough for most people

• Fast disk

• ZFS mirror with large L2ARC and ZIL on flash

• Enough cores

• 32 on our system
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Tip 2: Use a notification 
service

• I use pushover.net for notifications

• Simple RESTful interface

• Notifications to iOS and Android devices

• Also via browser

• Used with a command wrapper script

$ command-notice sleep 60

38

http://pushover.net
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Tip 3: Build in tmux

• Switch away from running build

• Sending, buffering, and rendering output just 
to throw it away wasteful

• Even locally, buffering adds delay between 
end of compilation and control of the 
terminal

39



CTSRD

Tip 4: Continuous 
integration

• Full OS builds after each change or compiler 
update (out of tree compiler)

• CHERI, MIPS64, and AMD64

• Daily release builds

• Release kernels booted on hardware and in 
simulation

• Additional Jenkins jobs build release branches 
daily
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Future work

• Pure-capability FreeBSD

• Run legacy MIPS64 code in sandboxes

• CHERI in the kernel

• 128-bit capabilities

• Non-MIPS architectures
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Q & A
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