
CTSRDCRASH-worthy
Trustworthy

Systems
Research and
Development

CTSRD

CheriBSD: a research
fork of FreeBSD

Brooks Davis
SRI International

BSDCan, Ottawa, Canada
June 12, 2015

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author(s)/
presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

80 million
customer records

Banks lose over $300m

Office of Personnel Managementhacked

CTSRD

Application
Compartmentalization

3

Compartmentalized "gzip" program

Conventional "gzip" program

Kernel

main
loop

vulnerable
compression

fetch logic

Kernel

Conventional
UNIX process
with ambient
authority

Capability-mode process

main
loop

vulnerable
compression

fetch logic Selected rights
delegated to
sandbox via
capabilities

• Compartmentalization decomposes software into isolated components.

• Each sandbox runs with only the rights required to perform its function.

• This model implements the principle of least privilege.

CTSRD

Capsicum

• Hybrid capability model: OS APIs for
application compartmentalization

• Out-of-the box in FreeBSD10.0

• Growing number of FreeBSD
programs are using Capsicum out-of-
the-box: tcpdump, auditdistd, hastd, etc.

• Casper framework offers services to
sandboxes (e.g., DNS, socket server)

• Google has published a Linux port

4

CTSRD

From compartments to
objects

• Sharing requires pointers
with enforced bounds and
permissions

• Can we use this
mechanism for every
pointer?

5

Process A Process B

Pointer Buffer

Process A

Pointer Buffer

CTSRD

CHERI capabilities

6

• Unforgeable

• Monotonic length and permissions

• Tagged memory protects capabilities

• Checks apply only on dereference

Base	 [64]

Length	 [64]

Permissions	 [32] Type	 [24] Reserved	 [8]

Offset	 [64]

CTSRD

C language support
Hybrid:

• __capability annotations on pointers

• Small changes in the C runtime

Pure:

• Compiler compiles code with all pointers are
capabilities

• Small application changes to maximize memory
safety

7

CTSRD

Binary compatibility

8

More compatible More safe

n64
Pure MIPS

Pure-capability
All pointers are

capabilities

Hybrid
Some pointers
are capabilities

CTSRD

9

OS kernel

Address-space executive

Address-space executive

Legacy application
+

capability libraries
Address-space executive

Pure-capability
application

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s

Hybrid capability/MMU OSes

Capability-based
OS with legacy

libraries

CHERI CPU

libsslzlibzlib zlibzlib class1
libssl

class2

libssllibssl

Single address space

CTSRD

The prototype CPU

• 64-bit MIPS-compatible ISA (≈R4000)

• CHERI ISA extensions

• Runs at 100MHz on FPGA

• Full software stack

10

CTSRD

CheriBSD supports
CHERI

• Platform support (BERI CPU)

• Support for new ISA features

• Infrastructure for compartmentalization

• Custom and adapted applications

• Build system improvements

11

CTSRD

Lots of deltas!

12

CTSRD

Kernel changes

13

Component Files
Modifed

Lines + Lines -
Headers 19 1424 11

CHERI initalization 2 49 4

Context managment 2 392 10

Exception handling 3 574 90

Memory copying 2 122 0

Virtual memory 5 398 27

Object capailities 2 883 0

System calls 2 76 0

Signal delivery 3 327 71

Process monitoring/debugging 3 298 0

Kernel debugger 2 264 0

CTSRD

libc changes

• Capability aware memcpy, memmove, etc

• Explicit capability forms of mem* and and
str* functions (memcpy_c,
memcpy_c_fromcap, memcpy_c_tocap)

• Fixing optimizations based on assumptions
about pages

• Split of syscalls and libc (coming soon!)

14

CTSRD

libcheri

• Compartment object management

• Type allocator

• Loader and runtime linker

• System call implementation for
compartments

15

CTSRD

/usr/libcheri

• Similar to /usr/lib32

• Builds all libraries in pure-capability mode

• Allows for pure-capability programs on a
MIPS64 system

16

CTSRD

Demo Applications

17

CTSRD

Tcpdump changes

18

0

1000

2000

3000

4000

5000

6000

7000

PI
Mee

tin
g D

em
o

Mem
or

y s
afe

ty

Cap
ab

ilit
y o

ffs
ets

Pe
r-p

ro
to

co
l

Pu
re

-ca
pa

bil
itie

s

Tcp
du

mp 4
.6.

2

Lin
ke

r s
up

po
rt

added removed

CTSRD

Infrastructure

• Build system improvements

• Unprivileged builds

• Per-program (and per-file) compiler
replacement

• Strip during build, not at install

• …

19

FreeBSD Journal
http://freebsdjournal.org

http://freebsdjournal.org

CTSRD

Early days: Perforce
Cons

• No public access

• Hard to add users

• Not ideal for CI

• Minimal offline support

21

Pros

• FreeBSD infrastructure

• Good merging

• Easy to maintain stacked
branches

• Familiar to team

CTSRD

Perforce ⇒ Github

• Switched October 2013

• Lost some history granularity

• Easy public access

• Trial by fire with git-at-scale

22

CTSRD

Github model

• Forked freebsd/freebsd repo

• Weird effect: forking CheriBSD seems to
fork FreeBSD

• All commits to master branch

• Merge changes from FreeBSD upstream

23

CTSRD

Merging: first attempt
git fetch upstream

git merge upstream/master

• Merges everything at once!

• Works

• Rebase usually produces insane results

• Don’t lose the push race!

24

CTSRD

Oops, we merged a bug!

25

upstream/master

masterC2 C3

C1 C4 C6

C7

CTSRD

Bisect is useless

26

upstream/master

masterC2 C4

C1 C5 C3000

C3001

…

…

CTSRD

mergify

• Merge one commit at a time

• Mostly true assumption that commits are
complete features

• Stream of small changes merging upstream
and cheribsd

• Bisect is possible

27

CTSRD

mergify

• Problem: merging tcpdump went weird

• Vendor commits have the empty repo as
a common parent with master!

• Solution: merge only direct commits

28

CTSRD

mergify Demo

29

CTSRD

Git rebase is broken

• Changes are reapplied in order

• Including merges from vendor branches!

• mergify doesn’t fix this (yet)

• May be an issue with using git wrong or git-
svn not handling vendor branches well

30

CTSRD

mergify TODOs

• rebase mode

• bisect mode

• check that things build/work at key points

31

CTSRD

Upstreaming
• Reduce merge conflicts

• What to upstream?

• Drivers for things people can use

• General infrastructure

• Infrastructure shared by multiple external
consumers

• Low impact things that are conflict prone

32

CTSRD

What we’ve upstreamed

• FDT support for MIPS

• Drivers and driver improvements

• Working floating point support for MIPS

• Boot loaders for MIPS

• Unprivileged builds and installs

33

CTSRD

Related Upstreaming

• Improvements to external projects:

• QEMU: FreeBSD MIPS64 usermode

• MIPS64 and ARM packages!

• Clang/LLVM: MIPS64 fixes

• LLDB: FreeBSD improvements, MIPS64

• Tcpdump: better compartmentalization
interfaces

34

CTSRD

Releases

• Internal snapshots

• Restricted releases

• Public releases: http://cheri-cpu.org/

• Shared make-based build infrastructure

35

http://cheri-cpu.org/

CTSRD

Tips for developers

36

http://xkcd.com/303/ (CC BY-NC 2.5)

http://xkcd.com/303/

CTSRD

Tip 1: Use a big machine

• Enough RAM to hold source and output in cache

• 128GB is enough for most people

• Fast disk

• ZFS mirror with large L2ARC and ZIL on flash

• Enough cores

• 32 on our system

37

CTSRD

Tip 2: Use a notification
service

• I use pushover.net for notifications

• Simple RESTful interface

• Notifications to iOS and Android devices

• Also via browser

• Used with a command wrapper script

$ command-notice sleep 60

38

http://pushover.net

CTSRD

Tip 3: Build in tmux

• Switch away from running build

• Sending, buffering, and rendering output just
to throw it away wasteful

• Even locally, buffering adds delay between
end of compilation and control of the
terminal

39

CTSRD

Tip 4: Continuous
integration

• Full OS builds after each change or compiler
update (out of tree compiler)

• CHERI, MIPS64, and AMD64

• Daily release builds

• Release kernels booted on hardware and in
simulation

• Additional Jenkins jobs build release branches
daily

40

CTSRD

Papers and reports
CHERI: A Hybrid Capability-System Architecture for Scalable Software
Compartmentalization. Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W.
Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J.
Murdoch, Robert Norton, Michael Roe, Stacey Son, and Munraj Vadera. IEEE Security and Privacy 2015.
Beyond the PDP-11: Processor support for a memory-safe C abstract machine. David
Chisnall, Colin Rothwell, Brooks Davis, Robert N.M. Watson, Jonathan Woodruff, Simon W. Moore, Peter
G. Neumann and Michael Roe. ASPLOS 2015.
The CHERI capability model: Revisiting RISC in an age of risk. Jonathan Woodruff, Robert N. M.
Watson, David Chisnall, Simon W. Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G.
Neumann, Robert Norton, and Michael Roe. ISCA 2014.
Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture.
Robert N.M. Watson, Peter G. Neumann, Jonathan Woodruff, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Simon W. Moore, Steven J. Murdoch, and Michael Roe. UCAM-CL-TR-864, Cambridge,
December 2014.

41

CTSRD

Future work

• Pure-capability FreeBSD

• Run legacy MIPS64 code in sandboxes

• CHERI in the kernel

• 128-bit capabilities

• Non-MIPS architectures

42

CTSRD

Q & A

43

