

diskctl(8): A permissively-licensed S.M.A.R.T.

and raw disk command utility framework

Michael Dexter
editor@callfortesting.org

The Self-Monitoring, Analysis and Reporting Technology or S.M.A.R.T., is an industry-
standard1 interface implemented by manufacturers of hard disk and solid-state drive devices
to present device “health” information to the controlling operating system. This information
can include device identification and configuration information, service hours, temperature,
failed block reallocation counts, Solid State Disk (SSD) endurance remaining, plus vendor-
specific attributes. These attributes are commonly accessed from various operating systems
using the “smartmontools”2 project and specifically the smartctl(8) command. While
widespread in its use, the smartmontools project does not feature a license that is suitable for
inclusion in BSD Unix operating systems, does not support Non-Volatile Memory Express
(NVMe) devices, and is limited in its output formatting abilities. The diskctl(8) project
aims to provide a framework to address the licensing and output formatting limitations of
smartmontools and provide a user-friendly framework for new device types and output
formatting syntaxes. In addition, diskctl(8) aims to provide an interface to common
SATA management commands such as IDENTIFY, plus the acoustic and power
management series of commands. Finally, the diskctl(8) project will explore the
possibility of supporting VirtIO AHCI S.M.A.R.T. and underlying zpool(8) status
pass-through for virtual machine disk devices, and other virtualized storage opportunities.

Available S.M.A.R.T. Utility Implementation Advantages and Disadvantages

The prevalent utilities used for accessing S.M.A.R.T. information on the BSD family of
operating systems are the smartctl(8) utility of the smartmontools project and the
atactl(8) utilities on OpenBSD and NetBSD.

smartmontools Advantages

The smartmontools project enjoys widespread, if not de facto usage in BSD environments
and for good reason:

• Availability on FreeBSD, OpenBSD, NetBSD and DragonFly BSD
• Support for SCSI and SATA devices
• Broad vendor device information including HDDs, SSDs RAID cards and

USB bridges
• The included monitoring daemon, smartd(8)
• Ability to initiate and terminate basic S.M.A.R.T. tests
• Familiarity brought by widespread use

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 http://t13.org/
2	
 https://www.smartmontools.org/	

smartmontools Disadvantages

• Licensing (GPLv2)3 that precludes its inclusion in BSD operating systems
• Limited output formatting options or per-attribute reporting
• Inability to operate as a library for inclusion in other utilities4
• Inability to support NVMe solid-state storage devices
• Inability to perform acoustic management on devices
• Inability to support all security features on devices
• Inability to perform storage bus operations
• Inability to support SATAPI eject
• Inability to support the SCSI Test Unit Ready (tur) command
• Inability to deliver raw Command Control Blocks (CCB) to devices
• Inability to support virtual disks5

While some of these limitations are addressed by additional in-base and third-party utilities
such as FreeBSD’s camcontrol(8) and the sg3_utils6 project, each of these demonstrate
equally-significant disadvantages.

atactl(8) Advantages

• Licensing that allows its inclusion in BSD operating systems
• Inclusion in the OpenBSD and NetBSD operating systems
• Support for acoustic management on devices
• Ability to initiate and terminate basic S.M.A.R.T. tests
• Support for security features on devices
• Support for write cache enable/disable

atactl(8) Disadvantages

• Depreciation from the FreeBSD Operating System
• Absent vendor device information
• Limited output formatting options or per-attribute reporting
• Inability to operate as a library for inclusion in other utilities
• Inability to support NVMe solid-state storage devices
• Inability to support SATAPI eject
• Inability to support the SCSI Test Unit Ready (tur) command
• Inability to deliver raw Command Control Blocks (CCB) to devices
• Failure to test for S.M.A.R.T. support before performing S.M.A.R.T. commands

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	
 https://www.smartmontools.org/browser/trunk/smartmontools/COPYING	

4	
 https://www.smartmontools.org/ticket/501	

5	
 https://www.smartmontools.org/wiki/FAQ#DosmartctlandsmartdrunonavirtualmachineguestOS	

6	
 http://sg.danny.cz/sg/sg3_utils.html	

diskctl(8) Licensing Considerations

A firm requirement of the diskctl(8)	
 project is that it and its accompanying
documentation and vendor information be published until a license that allows its inclusion in
the BSD operating systems. The candidate licenses for diskctl(8)	
 are the ISC license
preferred by the OpenBSD project, the 2-clause BSD license preferred by the FreeBSD
project and the MIT license. The MIT license is under consideration to discourage the
appearance of favoritism and some thought must be put into the other implications of each
candidate license.

Storage Device Interface Considerations

Based on the precedences of the “smartmontools”, OpenBSD, FreeBSD and the “sg3_utils”
project, the diskctl(8) project should target SCSI, SATA and SATAPI devices, plus the
more recent NVMe and VirtIO AHCI device types. diskctl(8) will be interface-agnostic
to the greatest extent possible and establish a clear strategy for incorporating new interface
standards. Of these interfaces, the VirtIO interface provides the most interesting area of
research, considering that the FreeBSD virtio_blk(4) driver can be modified to support
passed-through or synthetic S.M.A.R.T. data. This raises interesting questions such as:

• Should Virtual Machines have access to real or synthetic disk health information?
• Should a virtual disk be provided the “worst” S.M.A.R.T. data for all disks

on a system?
• Should a virtual disk backed by an aggregate storage device such as a RaidZ ZFS pool

be given a synthetic summary of all participating disks and/or the pool’s status?
• Should a virtual machine be provided all available disk health data of its host?
• Should a virtual disk provided via a file, iSCSI or NFS provide disk health data?

With regard to virtualization environments such as that provided by the FreeBSD bhyve and
OpenBSD vmm hypervisors, it is tempting to assume a “panopticon” approach to security
with which virtual machines are provided minimum insights into their host in every regard.
This stance is challenged by the fact that system administrator and vendors are increasingly
employing hypervisors to give their solutions the ability to perform unobtrusive operating
system updates that can be rolled back as needed. Under such a model, any virtual machine is
may be considered authoritative over the controlling hardware and thus its storage system. A
virtual machine may also obtain the authority to request its own migration to a different host
if it determines its backing storage to be a risk. Finally, a consumer of a commodity “cloud”
virtual machine provider may have a right to know the health status of their backing store,
driving their decision to stay, or move to an alternative host or even service provider.

diskctl(8) Library Considerations

The question of virtual disks and the heath of their backing physical disks raises broader
questions of what interaction between, or elimination of traditional storage layers should be
explored. The OpenZFS file system has been accused of rampant layering violations7 but
those very violations, notably the combination of a volume manger and file system, provide
one of its greatest advantages: its ability to rebuild disks using only the user data required,

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

7	
 https://blogs.oracle.com/bonwick/en/entry/rampant_layering_violation	

rather than all blocks of a given storage devices. By extension, it is worth considering if the
zpool(8) status command should incorporate individual disk S.M.A.R.T. status in
addition to its current data and metadata block checksum validation status.

The isolated nature of virtual machines and layer-violating nature of the OpenZFS file system
raise further questions of their interaction, particularly with regard to plural, averaged and
synthetic disk health status reporting. If a given virtualized storage system is provided to a
virtual machine or privileged host, it may be justified to provide a list of smart output for all
participating disks for parsing by the requesting machine. The traditional S.M.A.R.T. device
model however dictates a single response, which could be an average or “worst” response of
the member disks. Finally, it is worth exploring if a fully-synthesized S.M.A.R.T. response is
justified for virtual disks that takes into account not only underlying disk health but also
backing OpenZFS pool status. Ultimately, this is the type of information that must be
manually cross-referenced by system operators.

Environment Considerations

We have demonstrated that a case can be made for the aggregation of storage stack health
information such as the status information provided by disks and the OpenZFS file system.
Field experience will also show that operating system-level data is also critical to accurate
disk health monitoring and failure anticipation. Notably:

• A storage device reset count that far exceeds the host operating system or underlying
hardware reset count is a reliable indicator of a dysfunctional or failing storage
devices controller

• A sudden increase in disk latency is also a reliable indicator of an impending storage
device failure

The first of these would require a predictable, cross-operating system means of providing
date stamped host reboot information or at a minimum a mechanism for monitoring device
resets during a given uptime. This information has demonstrated that when a device’s latency
begins to increase dramatically, the operator is provided on average between one an eight
hours of warning before the final failure of the device. The second of these would require a
predictable, cross-operating system means of providing device latency information. This may
not be possible without a direct, intrusive latency test but the dtrace(1) framework may
provide a suitable solution on operating systems that support it.

Not unlike the low-level information that the dtrace(1) framework could provide,
FreeBSD developer John Baldwin has suggested that a “ccbdump” should be considered to
allow operators to observe device Command Control Blocks for debugging purposes in a
manner not unlike monitoring network packets. A filtering mechanism could simply report all
reads or writes, or provide finer-grained filtering by exact command or content block.

Finally, this research behind diskctl(8) has demonstrated that the BSD dd(1) utility is
inconsistent with regards to its noerror option, failing to replace defective blocks with null
blocks during a duplication, resulting in inaccurate disk offsets.

diskctl(8) Usage Syntax Influences

Unix utilities have long focused on either machine-friendliness as demonstrated by the terse
sysctl(8) command, or human-friendly top(1) utility. Few Unix utilities have been
architected to meet the requirements of both human and machine environments, the latter
being dominated by administrative shell scripting. At a minimum, the syntax of the zfs(8)
command will be considered for its ability to list specific properties and for its “scripting
mode” and ability to provide parseable values:

-H Used for scripting mode. Do not print headers and separate

fields by a single tab instead of arbitrary white space.

-p Display numbers in parseable (exact) values.

diskctl(8) Output Syntax Framework Considerations

While smartctl(8) has focused on human readable output, camcontrol(8) ‘cmd’ has
focused on byte-swapped hexadecimal input and output. System operators are increasingly
expecting system output to take the form of JSON, XML, YAML, shell variables and even
HTML as system orchestration and “cloud” environments become prevalent. The
diskctl(8) project will identify a lowest-common denominator “raw” format that is
suitable for reformatting into these familiar syntaxes in a manner that is extensible by system
operators. This goal should be achievable through unambiguous coding style and both inline
and external documentation.

diskctl(8) Concept Manual Page

diskctl(8) System Manager's Manual diskctl(8)

NAME

diskctl - disk control utility

SYNOPSIS

diskctl help

diskctl [-d,a,s,m] <sub command> <device>

diskctl smart [-o attribute] [-f output format] device

diskctl led [on|off] device (Control device LED)

diskctl cache [-e|-d] device (Enable|Disable device caching)

diskctl ccb [-b buffer size] device (Send raw CCB to device)

diskctl dump [-r|-w] device (Dump device read|write CCBs)

diskctl resets device (Device reset count since boot)

diskctl eject device (Eject removable device)

diskctl (test, secure, acoustic, reset etc.)

DESCRIPTION

diskctl allows a system administrator to perform a variety of
subcommands on a given SCSI, SATA, SATAPI, NVMe or VirtIO block
storage device.

diskctl [-d,a,s,m] [-o <output format> -Hp] <sub command> <device>

The diskctl command operates on -s SCSI, -a SATA family and -m NVMe
devices with default option to –d detect the device type.

diskctl output options are specified with the -o flag followed by the
formatting type: human, json, yaml, xml, html, shell.

-H Used for scripting mode. Do not print headers and separate

fields by a single tab instead of arbitrary white space.

-p Display numbers in parseable (exact) values.

 The default option is human-readable output.

SUBCOMMANDS

diskctl smart [-o numeric attribute, numeric attribute] device

Performs a S.M.A.R.T. inquiry on the specified device, reporting all
supported attributes or a specific list of comma-separated attributes
prefixed by the -o flag. ...

diskctl(8) Challenges

Because the respective disk interface commands that diskctl(8) must implement adhere
to well-established standards such as SCSI and SATA, and the formatting of given responses
would involve published standards such as JSON and XML, the greatest challenge of the
diskctl(8) project will be cross-platform device interface and capabilities identification.
At a minimum, diskctl(8) should follow the example of the smartctl(8) and
supplant device auto-identification with the ability to explicitly specify a device type for any
given command. i.e. diskctl -s for operations on SCSI devices.

Conclusion

Storage devices are the backbone of modern computing and storage systems have long
suffered from the limited communication between host bus adapter, storage device,
monitoring, partitioning and file system vendors. The diskctl(8) project aims to bring
the last of these software elements of the storage stack to the BSD and other POSIX
operating systems to combat the disunity of these interdependent elements. Over time, the
diskctl(8) project should provide an effective tool in the ongoing battle against data
corruption and loss in computing environments of all sizes.

