
NDA: NVMe CAM attachment

M. Warner Losh

Netflix, Inc.

BSDCan 2016

http://people.freebsd.org/~imp/talks/bsdcan2016/slides.pdf

http://people.freebsd.org/~imp/talks/bsdcan2016/slides.pdf

How I Learned To Stop Worrying and Love CAM

http://agentpalmer.com/wp-content/uploads/2015/01/Slim-Pickens-riding-the-Bomb.jpg

Netflix

I Internet Video

I Content Distribution Network (CDN)

I Operating at Scale

I Anticipating the Future

Netflix Open Connect

I According to Sandvine, Netflix streams ˜1/3 of Internet Traffic

I Netflix has own CDN (OpenConnect)

I Streams mutliple Terabits per second

http://blog.streamingmedia.com/wp-content/uploads/2014/02/2013CDNSummit-Keynote-Netflix.pdf

Netflix OCA Trends

I Netflix Storage Appliance (Hard Disk Drive based)

I Netflix Flash Appliance (Solid State Drive based)

I Netflix (and industry) transitioning from SSD to NVMe

http://pcdiy.asus.com/2015/04/asus-z97-x99-motherboards-intel-750-series-nvme-ssds-all-you-need-to-know/

Why Move To NVMe?

I 3rd Generation NVMe designs have ∼ 10–15µs latency

I Full Bandwidth (3.9BG/s) from 4-lane PCIe Gen 3 NVMe

I FreeBSD needs optimization (still good at ∼ 30µs)

http://itpeernetwork.intel.com/intel-ssd-p3700-series-nvme-efficiency/

Motivation For nda(4) The Why

I Jim Harris of Intel wrote nvme(4) with nvd(4) disk front end

I No easy way to add I/O scheduling to nvd(4) driver
I Netflix buys cheaper drives

I Lowers cost/GB of storage
I More drives increases redundancy
I Low cost drives are quirky
I Quirkiness gets in the way of smooth, reliable performance

I CAM I/O Scheduler smooths out performance quirks

Motivation For nda(4) The How

I FreeBSD I/O stack overview

I CAM basics

I Structure of CAM periph (with examples from nda)

I Structure of CAM XPT (changes needed for nda)

I Structure of CAM SIM (using nvme sim)

I Wrap up

Outline

FreeBSD I/O Stack

CAM
Code Flow
Important Data Structures
XPT Probe Driver Details
Periph driver details
XPT Details
SIM drivers

Summary

Outline

FreeBSD I/O Stack

CAM
Code Flow
Important Data Structures
XPT Probe Driver Details
Periph driver details
XPT Details
SIM drivers

Summary

FreeBSD I/O Stack

System Call Interface
Active File Entries
OBJECT/VNODE

File Systems
Page Cache Upper ↑

GEOM Lower ↓
CAM Periph Driver mmcsd nvd

CAM XPT mmcbus
nvme

NAND
CAM SIM Driver sdhci

Newbus Bus Space busdma
After Figure 7.1 in The Design and Implementation of the FreeBSD Operating System, 2015.

FreeBSD I/O Stack

I Upper half of I/O Stack focus of VM system
I Buffer cache
I Memory mapped files / devices
I Loosely coupled user actions to device action

I GEOM handles partitioning, compression, encryption
I Filters data (compression, encryption)
I Muxes Many to one (partitioning)
I Muxes One to Many (striping / RAID)
I Limited Scheduling

I CAM handles queuing and scheduling
I Shapes flows to device
I Limits requests to number of slots
I Enforces rules (eg tagged vs non-tagged)
I Multiplexes shared resources between devices

CAM I/O Scheduler

I Written at Netflix to serve video better during ”fill” periods

I Generic scheduler that allows arbitrary trade offs

I Gathers many real–time statistics on I/O performance

I Knows when drive has become congested

For more information please see my BSDCan 2015 I/O Scheduler
talk and paper:
http://people.freebsd.org/~imp/talks/bsdcan2015/slides.pdf

http://people.freebsd.org/~imp/talks/bsdcon2015/paper.pdf

https://www.youtube.com/watch?v=3WqOLolj5EU

Outline

FreeBSD I/O Stack

CAM
Code Flow
Important Data Structures
XPT Probe Driver Details
Periph driver details
XPT Details
SIM drivers

Summary

Code Flow Into CAM

bwrite() or bread()

bop strategy(buf)

g vfs strategy(buf)

g io request(bio)

convert buf to bio

bio→bio to→geom→start(bio)

disk→strategy(bio)

geom layers through geom disk

ndastrategy(bio), etc

buffer cache

GEOM

CAM

File system, pager, swapper, etc

CAM Overview (Simplified)

bio strategy() bio done()
⇓ ⇑

Peripheral
(periph)

da nda ada sa cd ch pass ses

Transport
(XPT)

scsi ata nvme mmc/sd

System
Interface
Module (SIM)

mpt ahci mps mpr ahd isp nvme sim

⇓ ⇑
hw command interrupts

busdma

CAM Command Control Blocks (CCBs)

I Message passing mechanism of CAM

I One giant union of all possible messages

I Some commands immediate, others queued to SIM

I Completion routine to call

I Has completion status

CAM paths

I Describes nodes in the CAM device tree

I Glue that connects periph, xpt and SIM together

I All objects have one or more paths

I Allows multiple periph drivers to attach to the same device

I Includes refcounts on topology

camcontrol devlist

<Micron_M600 MU01> at scbus0 target 2 lun 0 (pass0,da0)

<Micron_M600 MU01> at scbus0 target 3 lun 0 (pass1,da1)

#

CAM Async Notifications

I Paths register for an async notification

I Notifications queued
I Used for ’exceptional’ events

I device arrival
I device departure
I bus reset

I Sim gets notification to scan for devices

I XPT finds devices and gathers data

I XPT sends AC FOUND DEVICE and periph drivers attach

CAM devq

I Device queuing mechanism

I One slot per slot on device

I Dynamically resizable

I Controls transactions (CCBs) sent to device

I Can be frozen for error recovery

CAM Peripheral (periph) Drivers

I Participate in device enumeration

I Take block commands via strategy function

I Convert to protocol blocks

I Send them to the SIM via the XPT

I Notifies up the stack when SIM signals completion

CAM Transport (xpt) Drivers

I Enumerates devices on transport

I Passes CCB requests from periph to SIM

I Passes CCB completions from SIM to periph

I Answers common CCBs

CAM System Interface Module (SIM) Drivers

I Not SCSI Interface Module

I Accepts protocol blocks from periph driver

I Writes CDB to host adapter

I Sets up busdma for data associated with CCB

I Signals completion of CCB when hw completion interrupt fires

I Answers CCBs about the path to the device (speed, width,
mode, etc)

SIM Creation (Done In foo attach)

I Create a devq with cam simq alloc

I Create a SIM with cam sim alloc
I sim action routine to receive aysnc CCBs
I sim poll routine for dump CCBs
I devq
I name / unit #

I Register each bus with xpt bus register

I Create a path for device enumeration with xpt create path

But Where Does XPT Get Created?

I xpt bus register associates the xpt to the bus

I XPT PATH INQ CCB used to get transport type

I A giant switch statement maps the transport sub-flavors to
scsi, ata, or nvme transport.

I No actual xpt object is created, just a pointer to a struct

xpt xport of function pointers.

How are periph discovered?

I Each xpt driver registers “probe” device.

I Part of the path creation process queues an
AC PATHREGISTERED notification.

I When interrupts enabled, all AC PATHREGISTERED
notifications processed.

I These turn into XPT SCAN BUS calls.

I After the probe state machine runs for each device found, the
xpt layer sends AC FOUND DEVICE async message

I Probe devices receive these messages

I They do a XPT PATH INQ to discover details about the devie.

I If the details match the class of device they service, a new
peripheral is added which will handle the device.

Probe state machine?

I xpt probes can’t block

I xpt probes often need to send queries to the device

I State machine sends the query, when it’s done the results are
looked at an the next state is entered.

I For each state, a command is sent, the completion routine
clocks to the next state

I Probing is done when entering the device specific done state.

NVME XPT Probe State Machine

Identify

Done

Reset

Invalid

found device

restart

restart

scan bus

restart

SCSI XPT Probe State Machine

TUR

Inquiry

Full Inquiry

Report LUNs

Mode Sense

VPD List

Device ID

Ext Inquiry

TUR For Neg

Serial Num

INQ DV2

INQ DV1

DV Exit

Done

Invalid

TUR

More INQ

has LUNs

TQ Enabled

INQ Invalid

has LUNshas LUNs

TQ Enabled

INQ Invalid TQ Enabled

LUNs BAD

Mode Sense

VPD

Device IDSerial Num

TUR

failure

good INQ

failure

good INQ

TUR

LUN=0LUN!=0

Periph driver attaching

I AC DEVICE FOUND sent to all devices from xpt probe

I Periph’s async handler claims devices (beware: multiple can)

I Periph creates new instance of the device with
cam periph alloc

I device’s ’register’ routine called
I Allocates softc
I Initializes I/O Scheduler
I Matches quirks and applies them
I Uses Inquiry or Identify Data to choose flavor of device
I Negotiates with SIM details of the device
I Creates disk or char device
I Saves Identity information
I Registers async for interesting events
I calls xpt schedule to get things started

Required Routines

I open – Called when device is opened

I close – Called on last close

I strategy – Called for bio I/O

I start – Called when room for work

I dump – Crash dumps

I getattr – Get attributes

I gone – Drive has departed

I done – CCB has finished

xpt schedule

I Checks to see if there’s room in devq

I If there is, it allocates a CCB and calls periph’s start routine

I Can also make sure there’s room in the simq for SIMs with
concurrent transaction limitations beyond those of the device.

xpt action

I Pushes the I/O to XPT or SIM

xpt done

I Finishes a CCB up and calls its completion routine

I Also calls xpt schedule

I Requeue it if there’s errors

Strategy

I System presents I/O to driver in a struct bio

I Driver queues the I/O

I Drive calls xpt schedule to maybe do I/O

Start

I You know you have a slot

I Must either complete CCB or submit it to SIM for I/O

I Must call xpt schedule at the end

I Restrictions on I/O enforced here (eg, no TRIM while other
I/O outstanding, etc)

Done

I Called by the SIM as part of xpt done processing after it’s
processed the I/O

I Responsible for completing the bio up the stack

I Calls xpt schedule since there’s now a slot in drive that’s
opened up.

CAM I/O Code flow

ndastrategy(bio)

ndaschedule()

xpt schedule()

ndastart()

slots in devq

xpt action(ccb)

bio→ccb

simaction(ccb)

to hardware

ndadone(ccb,bio)

bio done(bio)

xpt done(ccb)

sim intr()

for each transaction

hw interrupt

bioq disksort

schedule a bio

bio queue /
delete queue

enq

bioq first

get next bio

deq

SIM Routines

I simaction

I simpoll

I IRQ or Timer for completions

I created in foo attach

simaction

I Processes the CCBs queued with xpt action

I Queued CCBs return w/o setting the status

I Immediate CCBs do the action and set status

simpoll

I Checks to see if the CCB has completed

I Called only during dumping when interrupts are disabled

sim IRQ

I Called when an I/O completes

I Finishes the CCB associated with the I/O with xpt done

Outline

FreeBSD I/O Stack

CAM
Code Flow
Important Data Structures
XPT Probe Driver Details
Periph driver details
XPT Details
SIM drivers

Summary

Key Points

I XPT means Transport

I SIM scans the bus for devices (explicitly, or in response to
AC PATHREGISTERED

I XPT probes device using special “probe” devices

I XPT probing state machine driven

I Once probed, XPT tells periph drivers by sending
AC FOUND DEVICE

I periph drivers create instances based on discovered paths
(may be many to 1)

I CCBs drive everything

FreeBSD I/O Stack nda World

System Call Interface
Active File Entries
OBJECT/VNODE

File Systems
Page Cache Upper ↑

GEOM Lower ↓
nda (periph) mmcsd

NAND
nvme xpt (xpt) mmcbus
nvme sim (sim)

sdhci
nvme

Newbus Bus Space busdma
After Figure 7.1 in The Design and Implementation of the FreeBSD Operating System, 2015.

Questions

Questions?
Comments?

Warner Losh

wlosh@netflix.com

imp@FreeBSD.org

http://people.freebsd.org/~imp/talks/bsdcon2016/slides.pdf

http://people.freebsd.org/~imp/talks/bsdcon2016/slides.pdf

	FreeBSD I/O Stack
	CAM
	Code Flow
	Important Data Structures
	XPT Probe Driver Details
	Periph driver details
	XPT Details
	SIM drivers

	Summary

