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kernel configuration

Setting global parameters

Creating new objects
e with parameters
* with unigue names

Deleting objects
Setting per-object parameters

Connecting/disconnecting objects
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The netmap example

® ports

e some of them may be created on demand (pipes, monitors, emulated
mode ports, passthrough ports, ...)

® several parameters

® memory regions
e several parameters
® “private” memory regions are created on demand

e bridges
e only created on demanad

® ports need to be bound to memory regions

e ports may be connected to bridges
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netmap limitations

» port to memory region binding fixed by port type
- hardware ports all bind to the global memory region

- private memory regions and bridges are on-demand
only

* N0 nice way to set parameters for on-demand
objects
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The available choices

* Ad-hoc system calls (and tools)

* joctl()

* syscti()

- pseudo-devices (and maybe tools)

- pseudo-filesystems
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Limitations

* the specialized ones are diverse and ad-hoc
- the general ones are not atomic

- pseudo-filesystems are very complex
» and still not atomic!
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JSON

- Use JSON

- (potentially) general
- accessible from almost any language
- it may express atomicity via groupings ({} and [])
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User Interaction

-read ()/write () from/to a special device

‘read () : get a JSON representation of the
subsystem objects

-write ():push a JSON “template” for queries
and/or updates
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Example: read()

# cat /dev/netmap

{
“port”: {
\\emo @ {

\\memid// : \\1//’

} o
“memﬂ. {
“1”. {
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Example:wri

updating:
# echo Y{“port”:{“em0”:{“memid”:
> /dev/netmap

# cat /dev/netmap

{
“port”: {
“em0”: |
“memid” . \\2//’
J
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atomicity

# echo ‘“{“mem”: {“1”: {“reg buf”: \
{ “size”: 9000, “num”: 50000 }}}}’ >/dev/netmap

The parser internally takes locks:

{ lock netmap ctrl
\\mem// . {

R lock mem-object “1”
“req but”: {

“size”: 9000,
“num”: 50000

} unlock mem-object “1°

} unlock netmap ctrl
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Human friendly syntax:

bare words:
# echo ‘{port:{emO:{memid: “27}}}" \

> /dev/netmap

“dot” substitution:
X7 becomes “{X1” or . {X1”7 as needed:

# echo ‘.port.emO.memid:”2”’ > /dev/netmap

number to string conversion:
# echo .port.emO.memid:2 > /dev/netmap

# echo .mem.l.req buf:{size:9000, num:5000} \
>/dev/netmap
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The protocol

- The parsing of what you write () starts when:
‘you close () the file descriptor, or
-you start read () Ing

By read () ing you get the reply to your last
action
- same shape as the input
- updates show the result (may be an error)
- “queries” are filled
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example: write(); read()

We need a "tool”:

# cat /usr/sbin/nmconft
exec 3<>/dev/netmap
cat “S@%“ >&3

cat <&3
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example: nmconf

“port”: |
“YemO0”: {

“memid”:

\\ SN {4

}
ctri+D
{
“port”: |
“emO0”: |
“memid”: “2”
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Creating Objects

funny character

unigue name
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Connecting objects

# cat <<EOF >/dev/netmap
{

\\mem// . {

“eX" A assign variable
J

J

“port”: {
“em0”: |

memid”: “SX replace variable
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Variables

# cat <<EOF >/dev/netmap

{
“port”: |
“emO”: |
“memid”: “W?X” guery and assign
}
“eml”: |
“‘memid”: “$X”
}
}
EOF
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Internals

{“port”:{*em0

" 'memid”: “?”}}

{“port”:{*emO0”: “memid”: “1”}}

userspace

|slr

kernel

jpool

pretty-print

\4
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JSLR

- tiny JSON parser
» ~700 loc, including comments

- optional extensions:
 bare words
« dot transformation

- simplified memory management
- pool allocated when parsing begins
- JSON object are created only inside the pool
- the pool is disposed when the output is produced

JPO - BSDCan, Ottawa, June 2016

20



JSON pool

header

|slr descriptors strings and numbers
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jslr descriptors

struct Jjpo { .. };

31 23 15 0

offset into the pool

lenght (number of fields/elements/chars)

type (number, string, object, array, pointer)
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jslr example

O 1
S 4
{ &
“oort”: | °] 1
\\emo 7. { S 3
“memid” . \\1// P
} O 1
} S 5
} S 1
1
memid e
m0 port
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Handlers

» Responsible for interpreting and producing JSON

» organized hierarchically starting at a root

» Polymorphic structures, three callbacks:

handler

* interp: given a _jpo, apply the updates, return new _jpo

« dump: return a _jpo describing the below hierarchy

* bracket: called when entering/leaving the

* The _jpo returned by jslr parsing is passed to t
the returned _jpo is pretty-printed to obtain the
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ne root handler;
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Example handers

* nm jp num: update/retrieve numbers

* nm Jjp dict:dictionary: maps strings to other
handlers; if dumped show up as { ... }

* E.g., for /dev/netmap
* root handler: a dict mapping “mem” and “port” to handlers

* the “mem” handler is a dict mapping memory areas id to
other handlers

* likewise, the “port” is yet another dict mapping port names
to other handlers

JPO - BSDCan, Ottawa, June 2016

25



Handlers for C objects

e retrive/update values from existing C objects
e parsing is in the context of a “current C object”

* nm jp ptr handlers: change/restore the current C
object and pass control to the proper “C-type” handler

* if the C object is a struct instance, the C-type handler
s typically a dict mapping field names to their
nandlers
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struct netmap adapter {

u int num tx rings;
U int num rx rings;
u int num tx desc;
u int num rx desc;

b

Handlers example

“port”: {
“emO0”: |

“num tx rings”: 1,
“num rx rings”: 1,
“num tx desc”: 250,
“num rx desc”: 250,
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nm Jp dict

“port”

Hierarchy example

nm jp dict

struct netmap adapter

256
2560

S
- TF
|

G

a

nm Jp num

emQ” —| obj
type

/

nm jp dict nm jp ptr

‘num_tx_rings”
‘num_rx_rings”
‘num_tx_desc”
‘num_rx_desc”

offset a

offset b

offset ¢

ARNN

offset d

nm jp dict
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Helper macros

NM JPO DECLARE CLASS (port, struct netmap adapter)
NM JPO RONUM (port, num tx rings)
NM JPO RONUM (port, num rx rings)
NM JPO RONUM (port, num tx desc)
NM JPO RONUM (port, num rx desc)

NM JPO CLASS END(port, port bracket)

NM JPO CLASS (port) Isthenan nm jp dict that
describes struct netmap adapters
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Future work

« What to do with “[ ... ]’?

- Implement searches (related to the above)?

Thank you!
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