
JSON-based configuration
of kernel subsystems

Giuseppe Lettieri, Luigi Rizzo 
Università di Pisa

BSDCan 2016, Ottawa



JPO - BSDCan, Ottawa, June 2016

• Setting global parameters 

• Creating new objects 
• with parameters 
• with unique names 

• Deleting objects 

• Setting per-object parameters 

• Connecting/disconnecting objects

2

kernel configuration



JPO - BSDCan, Ottawa, June 2016

• ports  
• some of them may be created on demand (pipes, monitors, emulated 

mode ports, passthrough ports, …) 
• several parameters 

• memory regions 
• several parameters 
• “private” memory regions are created on demand 

• bridges 
• only created on demand 

• ports need to be bound to memory regions 

• ports may be connected to bridges

3

The netmap example



JPO - BSDCan, Ottawa, June 2016

• port to memory region binding fixed by port type

• hardware ports all bind to the global memory region

• private memory regions and bridges are on-demand 
only

• no nice way to set parameters for on-demand 
objects

4

netmap limitations



JPO - BSDCan, Ottawa, June 2016

• Ad-hoc system calls (and tools)

• ioctl()

• sysctl()

• pseudo-devices (and maybe tools)

• pseudo-filesystems

5

The available choices



JPO - BSDCan, Ottawa, June 2016 6

Limitations
• the specialized ones are diverse and ad-hoc

• the general ones are not atomic

• pseudo-filesystems are very complex
• and still not atomic!



JPO - BSDCan, Ottawa, June 2016

• Use JSON
• (potentially) general
• accessible from almost any language
• it may express atomicity via groupings ({} and [])

7

JSON



JPO - BSDCan, Ottawa, June 2016

•read()/write() from/to a special device

•read(): get a JSON representation of the 
subsystem objects

•write(): push a JSON “template” for queries 
and/or updates

8

User Interaction



JPO - BSDCan, Ottawa, June 2016

# cat /dev/netmap 
{ 
  “port”: { 
    “em0”: { 
      “memid”: “1”, 
      … 
    } 
  }, 
  “mem”: { 
    “1”: { 
      … 
    } 
  } 
}

9

Example: read()



JPO - BSDCan, Ottawa, June 2016

updating: 
# echo ‘{“port”:{“em0”:{“memid”: “2”}}}’\ 

  > /dev/netmap 

# cat /dev/netmap 

{ 

   “port”: { 

     “em0”: { 

       “memid”: “2”, 

   … 

}

10

Example:write()



JPO - BSDCan, Ottawa, June 2016

# echo ‘{“mem”: {“1”: {“req_buf”: \  
   { “size”: 9000, “num”: 50000 }}}}’ >/dev/netmap

The parser internally takes locks:
{  
  “mem”: {  
    “1” : {  
      “req_buf”: {  
        “size”: 9000,  
        “num”: 50000  
      }  
    }  
  }  
}

11

atomicity

lock mem-object “1”

unlock mem-object “1”

lock netmap ctrl

unlock netmap ctrl



JPO - BSDCan, Ottawa, June 2016

bare words: 
# echo ‘{port:{em0:{memid: “2”}}}’ \ 

   > /dev/netmap 

“dot” substitution: 
 “.X” becomes “{X}” or “:{X}” as needed: 
# echo ‘.port.em0.memid:”2”’ > /dev/netmap 

number to string conversion: 
# echo .port.em0.memid:2 > /dev/netmap 

# echo .mem.1.req_buf:{size:9000, num:5000} \ 
    >/dev/netmap  

12

Human friendly syntax:



JPO - BSDCan, Ottawa, June 2016

• The parsing of what you write() starts when:
• you close() the file descriptor, or
• you start read()ing

• By read()ing you get the reply to your last 
action
• same shape as the input
• updates show the result (may be an error)
• “queries” are filled

13

The protocol



JPO - BSDCan, Ottawa, June 2016

# cat /usr/sbin/nmconf 
exec 3<>/dev/netmap 
cat “$@“ >&3 
cat <&3

14

example: write(); read()

We need a “tool”:



JPO - BSDCan, Ottawa, June 2016

# nmconf 
{ 
  “port”: { 
    “em0”: { 
      “memid”: “?” 
    } 
  } 
} 
ctrl+D
{ 
  “port”: { 
    “em0”: { 
      “memid”: “2” 
    } 
  } 
}

15

example: nmconf



JPO - BSDCan, Ottawa, June 2016

# nmconf 
{  
  “mem”: {  
    “&”: {  
      “req_buf”: { … }  
    }  
  }  
}  
ctrl+D  
{  
  “mem”: {  
    “3”: {  
       …  
    }  
  }  
}

16

Creating Objects

funny character

unique name



JPO - BSDCan, Ottawa, June 2016

# cat <<EOF >/dev/netmap 
{  
  “mem”: {  
    “&X”: {  
     …  
    }  
  }  
  “port”: {  
    “em0”: {  
      “memid”: “$X”  
    }  
  }  
}  
EOF

17

Connecting objects

assign variable

replace variable



JPO - BSDCan, Ottawa, June 2016

# cat <<EOF >/dev/netmap 
{  
  “port”: {  
    “em0”: {  
      “memid”: “?X”  
    }  
    “em1”: {  
      “memid”: “$X”  
  }  
}  
EOF

18

Variables

query and assign



JPO - BSDCan, Ottawa, June 2016 19

Internals
{“port”:{“em0”: “memid”: “?”}} {“port”:{“em0”: “memid”: “1”}}

jslr jpool

handlers

userspace
kernel

pretty-print



JPO - BSDCan, Ottawa, June 2016

• tiny JSON parser
• ~700 loc, including comments

• optional extensions:
• bare words
• dot transformation

• simplified memory management
• pool allocated when parsing begins
• JSON object are created only inside the pool
• the pool is disposed when the output is produced

20

JSLR



JPO - BSDCan, Ottawa, June 2016 21

JSON pool

strings and numbersjslr descriptors

header



JPO - BSDCan, Ottawa, June 2016 22

jslr descriptors

031 1528

offset into the pool

lenght (number of fields/elements/chars)

type (number, string, object, array, pointer) 

struct _jpo { … };



JPO - BSDCan, Ottawa, June 2016 23

jslr example

{ 
  “port”: { 
    “em0”: {  
      “memid”: “1” 
    } 
  } 
}

m0 port
 memid e
       1

o   1

s   4

p    

o   1

s   3

p    

o   1

s   5

s   1



JPO - BSDCan, Ottawa, June 2016

• Responsible for interpreting and producing JSON

• organized hierarchically starting at a root handler

• Polymorphic structures, three callbacks:
• interp: given a _jpo, apply the updates, return new _jpo 
• dump: return a _jpo describing the below hierarchy
• bracket: called when entering/leaving the hierarchy

• The _jpo returned by jslr parsing is passed to the root handler; 
the returned _jpo is pretty-printed to obtain the output JSON

24

Handlers



JPO - BSDCan, Ottawa, June 2016

• nm_jp_num: update/retrieve numbers

• nm_jp_dict: dictionary: maps strings to other 
handlers; if dumped show up as ‘{ … }’

• E.g., for /dev/netmap
• root handler: a dict mapping “mem” and “port” to handlers
• the “mem” handler is a dict mapping memory areas id to 

other handlers
• likewise, the “port” is yet another dict mapping port names 

to other handlers

25

Example handers



JPO - BSDCan, Ottawa, June 2016

• retrive/update values from existing C objects 

• parsing is in the context of a “current C object” 

• nm_jp_ptr handlers: change/restore the current C 
object and pass control to the proper “C-type” handler 

• if the C object is a struct instance, the C-type handler 
is typically a dict mapping field names to their 
handlers

26

Handlers for C objects



JPO - BSDCan, Ottawa, June 2016 27

Handlers example

struct netmap_adapter {  
  …  
  u_int num_tx_rings;  
  u_int num_rx_rings;  
  u_int num_tx_desc; 
  u_int num_rx_desc; 
  … 
};  
  

{  
  “port”: {  
    “em0”: {  
      …  
      “num_tx_rings”: 1,  
      “num_rx_rings”: 1,  
      “num_tx_desc”: 256,  
      “num_rx_desc”: 256,  
      …  
    }  
  } 
}  



JPO - BSDCan, Ottawa, June 2016 28

Hierarchy example

“mem” 
“port”

“1” 
“2”

“em0” 
…

nm_jp_dict

nm_jp_dict

nm_jp_dict nm_jp_ptr

obj 
type

nm_jp_dict

… 
“num_tx_rings” 
“num_rx_rings” 
“num_tx_desc” 
“num_rx_desc” 

…

nm_jp_num

… 
1 
1 
256 
256 
…

struct netmap_adapter

offset a

offset b

offset c

offset d

a b c d



JPO - BSDCan, Ottawa, June 2016 29

Helper macros
NM_JPO_DECLARE_CLASS(port, struct netmap_adapter) 
  … 
  NM_JPO_RONUM(port, num_tx_rings)  
  NM_JPO_RONUM(port, num_rx_rings)  
  NM_JPO_RONUM(port, num_tx_desc)  
  NM_JPO_RONUM(port, num_rx_desc)  
  …  
NM_JPO_CLASS_END(port, port_bracket)

NM_JPO_CLASS(port) is then an nm_jp_dict that 
describes struct netmap_adapters 



JPO - BSDCan, Ottawa, June 2016

• What to do with “[ … ]”?

• Implement searches (related to the above)?

30

Future work

Thank you!


