
PASTE: Fast End System Networking
with netmap

Michio Honda,
Giuseppe Lettieri, Lars Eggert and Douglas Santry

BSDCan 2018

Contact: @michioh, micchie@sfc.wide.ad.jp
Code: https://github.com/micchie/netmap/tree/stack

mailto:micchie@sfc.wide.ad.jp

This talk is about:
What are problems with current network stack?

How do we solve it?

This talk is NOT about:
User-space network stack is awesome

Problem 1: Current socket API is slow

Request (1400B) and response (64B) over HTTP and TCP

23 us

2.8 Gbps 400 us

n = kevent(fds)
for (i=0; i<n; i++) {
 read(fds[i], buf);
 ...
 write(fds[i], res);
}

Server has Xeon 2640v4 2.4 Ghz (uses only 1 core) and Intel X540 10 GbE NIC
Client has Xeon 2690v4 2.6 Ghz and runs wrk HTTP benchmark tool

Problem 2: Current stack cannot utilize Non-Volatile
Main Memory efficiently
● Review: NVMMs offer fast, byte-addressable persistence

CPU
Caches

Block access w/
system calls

Byte access w/
load/store

100-1000s us

70

5-50 ns

-1000s ns
Main Memory

HDD / SSD

Problem 2: Current stack cannot utilize Non-Volatile
Main Memory efficiently
● Review: NVMMs offer fast, byte-addressable persistence

Problem 2: Current stack cannot utilize Non-Volatile
Main Memory efficiently
Durable-write request (1400B) and response (64B) over HTTP and TCP

n = kevent(fds)
for (i=0; i<n; i++) {
 read(fds[i], buf);
 ...
 memcpy(nvmm, buf);
 clflush(nvmm);
 ...
 write(fds[i], res);
}

Almost half Almost double

Server has Xeon 2640v4 2.4 Ghz
Client has Xeon 2690v4 2.6 Ghz and runs wrk HTTP benchmark tool

Summary

● Per-socket system call and I/O req. must be avoided
● Data copy (even to NVMM) must be avoided

Getting architecture right

How do we address these problems
while preserving benefits offered by the
current stack and socket API today?

PASTE

● Scalable, flexible end system networking architecture
○ True zero copy (even to NVMM)
○ System call and I/O batching across multiple sockets
○ Support for kernel TCP/IP
○ Protocol independence
○ Blocking and busy polling
○ Protection

What we benefit from
socket API today

PASTE building blocks

● Two netmap extensions:
○ stack port

■ integrates the kernel TCP/IP implementation
■ same level of abstraction with pipe and vale ports

○ extmem subsystem
■ supports arbitrary (user virtual address) memory

region for netmap objects
■ mmap()-ed file in NVMM can be used

PASTE in Action

20
[7]

App thread

slot [0]

NIC

TCP/IP

ne
tm

ap
 A

P
I

cur
Shared memory region

21
22
23 24

25
26

27 [0]

user
kernel

[4]
[8]

bufs

PASTE in Action

● poll() triggers NIC I/O
and TCP/IP processing

20
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP

NIC

TCP/IP

ne
tm

ap
 A

P
I

user
kernel

cur
Shared memory region

21
22
23 24

25
26

27 [0]
[4]
[8]

bufs

PASTE in Action

● Imagine 7 packets
received

20
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP

NIC

TCP/IP

ne
tm

ap
 A

P
I

user
kernel

cur
Shared memory region

21
22
23 24

25
26

27 [0]
[4]
[8]

bufs

1. Run NIC I/O and TCP/IP

PASTE in Action

● They are in-order TCP
segments, so the kernel set
them to app ring slots

● Zero copy
○ swap with buffers in

the current app ring
● Advance tail pointer to

indicate new app data
0

[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP

NIC

TCP/IP

ne
tm

ap
 A

P
I

user
kernel

cur
Shared memory region

1
2
3 4

5
6

27 [0]
[4]
[8]

tail

bufs

PASTE in Action

● poll() returns

0
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP

NIC

TCP/IP

ne
tm

ap
 A

P
I

user
kernel

cur
Shared memory region

1
2
3 4

5
6

27 [0]
[4]
[8]

tail

bufs

PASTE in Action

0
[7]

App thread

slot [0]

1. Run NIC I/O and TCP/IP
2. Read data on ring

NIC

TCP/IP

user
kernel

cur
Shared memory region

1
2
3 4

5
6

27 [0]
[4]
[8]

tail

ne
tm

ap
 A

P
I

bufs

● App reads buffers in
ring slots from cur to
tail

PASTE in Action

● App advances cur
○ Return buffers in slot

0-6 to the kernel at
next poll()
■ Buffer indices are

also 0-6 in this case

App thread

1. Run NIC I/O and TCP/IP
2. Read data on ring
3. Update ring pointer

NIC

TCP/IP

user
kernelShared memory region

[0]
[4]
[8]

ne
tm

ap
 A

P
I

0
[7]slot [0]

1
2
3 4

5
6

27 tail
cur

bufs

Zero copy write

● App does not have to return
buffers to the kernel
○ e.g, useful for KVSes

App thread

1. Run NIC I/O and TCP/IP
2. Read data on ring
3. Record data
4. Swap out buf(s)
5. Update ring pointer

NIC

TCP/IP

Shared memory region

[0]
[4]
[8]

ne
tm

ap
 A

P
I

0
[7]slot [0]

8
9
3 4

5
10

27 tail
cur

bufs

53

0 5 7

(1, 96, 120)
(2, 96, 987)
(6, 96, 512)

user
kernel

B+tree

Durable zero copy
write

● mmap() a file on NVMM
○ /mnt/pm/pp

● Create netmap objects in it
with extmem

● Create B+tree also in NVMM

App thread

1. Run NIC I/O and TCP/IP
2. Read data on ring
3. Flush buf(s)
4. Flush metadata
5. Swap out buf(s)
6. Update ring pointer

NIC

TCP/IP

File system
/mnt/pm

Shared memory region
/mnt/pm/pp

[0]
[4]
[8]

ne
tm

ap
 A

P
I

0
[7]slot [0]

8
9
3 4

5
10

27 tail
cur

bufs

53

0 5 7

(1, 96, 120)
(2, 96, 987)
(6, 96, 512)

/mnt/pm/plog

user
kernel

B+tree

How app code look like
1.poll(app_ring)

2.for (bufi in nic_rxring) {
 nmb = NMB(bufi);
 m = m_gethdr();
 m->m_ext.ext_buf = nmb;
 ifp->if_input(m);
}
4.for (bufi in readable) {
 set(bufi, fd(so), app_ring);
 }

3.mysoupcall (so) {
 mark_readable(so->so_rcv);
 }

TCP/UDP/SCTP/IP impl.

nmd = nm_open(“stack:0”);
ioctl(nmd->fd,, “stack:em0”);
s = socket();bind(s);listen(s);
int fds[2] = {nmd, s};
for (;;) {
 poll(fds, 2,);
 if (fds[1] & POLLIN)
 ioctl(nmd,, accept(fds[1]));
 if (fds[0] & POLLIN) {
 for (slot in nmd->rxring) {
 int fd = slot->fd;
 char *p = NETMAP_BUF(slot)
 　 　　　+ slot->offset;
 }
 }
}

netm
ap

netm
ap

What’s going on in poll()

*use of extmem can be specified at nm_open()

PASTE performance

Single CPU core

Don’t store data Store data in NVMM

Server has Xeon 2640v4 2.4 Ghz, Intel X540 10 GbE NIC and HPE NVDIMM
Client has Xeon 2690v4 2.6 Ghz and the sameNIC, and runs wrk HTTP benchmark tool

PASTE performance

Multiple CPU cores

Server has Xeon 2640v4 2.4 Ghz, Intel X540 10 GbE NIC and HPE NVDIMM
Client has Xeon 2690v4 2.6 Ghz and the sameNIC, and runs wrk HTTP benchmark tool

PASTE performance

Redis

Server has Xeon 2640v4 2.4 Ghz, Intel X540 10 GbE NIC and HPE NVDIMM
Client has Xeon 2690v4 2.6 Ghz and the sameNIC

YCSB (read mostly) YCSB (update heavy)

Changes needed in FreeBSD core
@@ -1101,6 +1101,8 @@ soclose(struct socket *so)
 drop:
 if (so->so_proto->pr_usrreqs->pru_close != NULL)
 (*so->so_proto->pr_usrreqs->pru_close)(so);
+ if (so->so_dtor != NULL)
+ so->so_dtor(so);

 SOCK_LOCK(so);
@@ -111,6 +111,7 @@ struct socket {

 int so_ts_clock; /* type of the clock used for timestamps */
 uint32_t so_max_pacing_rate; /* (f) TX rate limit in bytes/s */
+ void (*so_dtor)(struct socket *so); /* (a) optional destructor */
 union {
 /* Regular (data flow) socket. */

Summary

● PASTE integrates the kernel TCP/IP implementations and
emerging NVMM with netmap API

● Status
○ In the process of upstreaming to netmap (w/ Giuseppe Lettieri)

Academic paper:
Michio Honda, Giuseppe Lettieri, Lars Eggert and Douglas Santry,

“PASTE: A Network Programming Interface for Non-Volatile Main Memory”, USENIX NSDI 2018
Code:

https://github.com/micchie/netmap/tree/stack
Contact:

@michioh, micchie@sfc.wide.ad.jp

https://github.com/micchie/netmap/tree/stack
mailto:micchie@sfc.wide.ad.jp

