
IT Automation with Puppet

Romain Tartière <romain@FreeBSD.org>

BSDCan 2018
University of Ottawa

Ottawa, Canada
June 9th, 2018

mailto:romain@FreeBSD.org

Photo: Ollivier Robert

Romain Tartière

FreeBSD user since 2002
(I guess… FreeBSD 5.0-BETA1)
FreeBSD developer since 2010
(romain@)

Was a Systems Administrator for
HeathGrid working on EGI (European
Grid Infrastructure)

Discovered Puppet at that time
(~10 years ago… 0.25 -> 2.6)

Agenda

▶ Understanding how Puppet works
▶ Puppet from Zero to Hero

▶ Installing
▶ Managing Code
▶ Organizing Code
▶ Hiera
▶ Custom Facts
▶ PuppetDB
▶ Orchestration

As soon as something is unclear, raise your hand!

Why would you use Puppet?

Automation!

Why automate?

▶ Consistency
▶ Predictability
▶ Reliability
▶ Speed

The Big Picture

Puppet Agent Puppet Master

facts

manifest

catalog

apply
report

The Puppet Language
Declaring resources

user { 'romain':
ensure => present,
comment => '& Tartiere',
shell => '/usr/local/bin/zsh',

}

The Puppet Language
Variables

$motd = @("EOT")
This is ${facts['networking']['fqdn']},
running ${facts['os']['family']} ${facts['os']['architecture']}
| EOT

file { '/etc/motd':
ensure => file,
owner => 'root',
group => 'wheel',
content => $motd,

}

The Puppet Language
Facts

Facts are collected by facter(1).

facter
[...]
os => {
architecture => "amd64",
family => "FreeBSD",
hardware => "amd64",
name => "FreeBSD",
release => {

full => "11.1-RELEASE-p10",
major => "11",
minor => "1-RELEASE-p10"

}
}
[...]

The Puppet Language
Conditionals & functions

if versioncmp($foo_version, '1.0') >= 0 {
service { 'foo':

ensure => running,
enable => true,

}
}

$users = ['foo', 'bar', 'baz']
$users.each |$user| {
file { "/home/${user}/.foorc":

ensure => file,
owner => $user,
group => $user,

}
}

The Puppet Language
Classes

class foo {
package { 'foo':

ensure => installed,
}

service { 'foo':
ensure => running,
enable => true,

}

Package['foo'] -> Service['foo']
}

include foo
require foo
contain foo
class { 'foo': }

The Puppet Language
Defined classes

define root_file (
String $text,

) {
file { "/${title}":

ensure => file,
content => $text,

}
}

root_file { 'LICENSE':
text => "BSD 2 clauses\n",

}
root_file { 'SYSADMINS':
text => "romain\n",

}

The Puppet Language
Node dependent resources

node 'foo.example.com' {
file { '/usr/bin/rsh':

ensure => absent,
}

}

node /^foo-/ {
include foo

}

node default {
service { 'puppet':

enable => true,
}

}

Modules
Adding some abstraction

Wrap all resources to manage something (e.g. apache, postgresql)

Abstracts OS-specific information, e.g.

▶ Service names;
▶ Package names;
▶ Configuration file paths;
▶ …

The Forge
Where to find modules

https://forge.puppet.com

Central repository for modules

5600+ modules available

430+ modules for managing ssh

Some authors do not publish their modules on the forge…

https://forge.puppet.com

Installing
Puppet Agent

pkg install puppet5

puppet resource service puppet ensure=running enable=true

Installing
Puppet Master

pkg install puppetserver5

puppet resource service puppetserver ensure=running enable=true

Hint: You may want to adjust puppetserver_login_class in /etc/rc.conf

Getting started
The first steps

Put your manifest files (*.pp) under
/usr/local/etc/puppet/environments/production/manifests/

Discover the Puppet language; experiment with modules

Hints:
▶ start with something you master
▶ start with something that applies to all your nodes (ssh, logging, monitoring, …)
▶ stop as soon as you start to copy-paste code

Control repo
Manifests are code

Manifests are code is managed with a VCS

Template: https://github.com/puppetlabs/control-repo/

git branch ⇐⇒ Puppet environment

Default branch: production

https://github.com/puppetlabs/control-repo/

Control repo
Deployment with R10K

Extracts each branch of the control repo in a separate directory

r10k deploy environment production -vp
puppet generate types --environment production

Hint: implement a post-receive hook

Roles and Profiles
Overview

role::website role::app role::appapi role::loadbalancer

profile::appli profile::database profile::webserver profile::openssh

profile::logserver profile::logclient profile:: ...

apache bacula postgresql ntp

riemann haproxy ssh ...

package file user group

exec sshkey service ...

Roles and Profiles
Nodes

Find me in manifests/*.pp

node 'ns48724.example.com' {
include role::website

}

node 'ns38711.example.com' {
include role::product

}

node default {
include role::base

}

Roles and Profiles
Roles

Find me in site/role/manifests/*.pp

class role::base {
include profile::openssh
include profile::syslog

}

class role::website inherits role::base {
include profile::webserver
include profile::example_com_website

}

class role::product inherits role::base {
include profile::database
include profile::product_runner

}

Roles and Profiles
Profiles

Find me in site/profile/manifests/*.pp

class profile::webserver {
class { 'apache':

default_vhost => false,
default_mods => false,
mpm_module => 'event',
server_tokens => 'Prod',

}

class { 'apache::mod::ssl':
ssl_cipher => 'HIGH:!aNULL:!MD5:!RC4',
ssl_protocol => ['all', '-SSLv2', '-SSLv3', '-TLSv1', '-TLSv1.1'],

}

...
}

Interlude
include vs. resource-style declaration

include apache class { 'apache':
mpm_module => 'event',
server_tokens => 'Prod',

}

include apache class { 'apache':
mpm_module => 'prefork',
server_tokens => 'Full',

}

Roles and Profiles
Profiles with parameters

class profile::mailserver (
Enum['relayhost', 'smarthost'] $configuration = 'smarthost',

) {
$listen_address = $configuration ? {

'relayhost' => ['::1', '127.0.0.1'],
'smarthost' => ['::', '0.0.0.0'],

}
...

class { 'postfix':
listen => $listen_address,
...

}
}

Roles and Profiles
…while talking about patterns

Think Facade and Adapter design patterns

A facade is used when a simple interface to a complex or
difficult to understand system is desired.

Interfaces may be incompatible, but the inner functionnal-
ity should suit the need. The adapter design pattern allows
otherwise incompatible classes to work together by con-
verting the interface of one class into an interface expected
by the the client.

Roles and Profiles
Summary

Nodes

▶ include a single role

Roles

▶ include any number
of profiles

▶ are named after
business names

Profiles

▶ declare actual
resources

▶ are named after
technology stack

Hiera

Used for Automatic Parameter Lookup

Configured in hiera.yaml and data/**/*.yaml

alpha beta gamma delta nodes/%{facts.hostname}.yaml
dc1 dc2 dc/%{facts.datacenter}.yaml

n/a common.yaml

profile::mailserver::configuration: 'relayhost'

Custom Facts

Helps classification

Room number (e.g. B21)

Encodes:
▶ Building (first letter)
▶ Floor (first digit)
▶ Actual number of the room (last digit)

Can be static or dynamically inferred from:
▶ hostname (e.g. b21-02)
▶ ipaddress (e.g. each room has it’s own IPv4 /24)

Custom Facts
Structured Data Facts

Can be set in /usr/local/etc/facter/facts.d/room.yaml:

room: B21
building: B
floor: 2
room_number: 1

Custom Facts
Dynamic Facts

Usually set in a module in <module>/lib/facter/room.rb:

Facter.add(:room) do
setcode do

if Facter.value('hostname').match(/\A([a-c]\d\d)-\d+\z/)
$1.upcase

end
end

end

Facter.add(:building) do
setcode do

if room = Facter.value('room')
room[0]

fi
end

end

Custom Facts
External Facts

Usually set in a module in <module>/facts.d/room:

#!/bin/sh
room=$(hostname | sed -o '^...' | tr 'a-z' 'A-Z')
set -- $(echo $room | sed -e 's/\(.\)/\1 /g')

cat <<EOT
room=$room
building=$1
floor=$2
room_number=$3
EOT

PuppetDB
Put Your Data to Work

Stores:
▶ Facts
▶ Catalogs
▶ Reports

Puppet Query Language

Allows exporting resources when configuring a node and collecting them on
another node
Use cases: ssh keys fingerprints, backups, …

PuppetDB
Puppetboard

Orchestration

Configuration Management vs. Orchestration

The Marionette Collective

▶ A lot of options to choose from
▶ Usability depends on your choices
▶ Security depends on your choices

Choria

▶ Secure by default
▶ Easy to maintain
▶ Production ready

Choria
Work In Progress Ports

Get the WIP sysutils/choria port:
https://github.com/smortex/puppet5/

For assistance: #choria channel on puppetcommunity slack
https://puppetcommunity.slack.com/messages/C9KFTKRU3/

https://github.com/smortex/puppet5/
https://puppetcommunity.slack.com/messages/C9KFTKRU3/

Jumping in!

Try it!
https://wiki.freebsd.org/Puppet/GettingStarted

Report success & failures to puppet@

For assistance: #freebsd channel on puppetcommunity slack
https://puppetcommunity.slack.com/messages/C6CK0UGB1/

As usual, Problem Reports are welcome!

https://wiki.freebsd.org/Puppet/GettingStarted
https://puppetcommunity.slack.com/messages/C6CK0UGB1/

Contributing with upstream

Most projects are public on GitHub:
https://github.com/puppetlabs/

You’ll have to sign a Contributor License Agreement (CLA)

You’ll also need a Jira Account on
https://tickets.puppetlabs.com/

Pull-Requests are merged

https://github.com/puppetlabs/
https://tickets.puppetlabs.com/

Thanks!

