
6/8/2018 Adding verification to FreeBSD loader

file:///Users/sjg/Public/talks/obj/loader-veriexec-slides.htm 1/7

Adding verification to FreeBSD loader
aka; loader verified exec

Simon J. Gerraty

Juniper Networks, Inc.

2018

Imagine something very witty here

Agenda
Introduction
Verified Exec in Junos

Secure boot
Manifests
loader veriexec
Q&A

Veriexec in Junos
Introduced in Junos 7.2 (2005) for FIPS-140-2

originally from NetBSD
added support for signed manifests
relied on raising securelevel
Junos kernel approximately FreeBSD 4.2

General release in Junos 7.5 (2005)
added boot -x safety belt; never needed

Blocks script kiddies
Mitigates famous vulnerabilities

Veriexec in BSDX
re-implemented as mac_veriexec for FreeBSD 10
avoids kernel hacks
suitable for up-streaming

Veriexec manifests
list of pathnames, hashes, flags and labels:

sbin/init sha1=d88f88c24d91b87e6c072d5bce60582ada890cfa
sbin/veriexec sha1=5a8b6e3944185c98795986e24a260a711b6a024a no_ptrace trusted
usr/bin/python sha1=0234c35ac932d2dc8738e84128ec1d552df9d501 indirect

Junos manifests add uid and other fields:

sbin/veriexec sha1=958a4da868abb2e2aa913cece234beb688085b4c uid=0 gid=0 mode=555 no_ptrace trusted

usr/sbin/adaemon sha1=cafebabe... label=maclabel(7)

support for sha256 hashes

BSDX (XML) packages
package.xml contains all meta data

various tags and toggles allow package system to do it's job
signed manifest providing fingerprints for content
most content is in an iso image (cd9660)

iso image has it's own signed manifest for its content
some packages provide modules that need to be pre-loaded

6/8/2018 Adding verification to FreeBSD loader

file:///Users/sjg/Public/talks/obj/loader-veriexec-slides.htm 2/7

BSDX kernel package
kernel package is somewhat atypical:

(cd /packages/sets/active/os-kernel && find * -type f)
boot/miibus.ko
boot/if_fxp.ko
boot/if_igb.ko
boot/if_ixlv.ko
boot/loader.conf
boot/if_em.ko
boot/contents.izo
boot/kernel
manifest
manifest.ecerts
manifest.esig
package.xml

BSDX runtime package
most packages look more like this:

(cd /packages/sets/active/os-runtime && find * -type f)
contents/contents.izo
contents/contents.symlinks
contents/files.tar
manifest
manifest.ecerts
manifest.esig
package.xml
scripts/mounted.sh
scripts/downgrade.sh

BSDX modules package
of more interest to the loader:

(cd /packages/sets/active/junos-modules && find * -type f)
boot/hmac_drbg.ko
boot/fips_core.ko
boot/sdk_core.ko
boot/loader.conf
boot/init.4th
boot/junosprocfs.ko
boot/mac_fips.ko
boot/mac_sdk.ko
contents/contents.izo
contents/contents.symlinks
manifest
manifest.certs
manifest.ecerts
manifest.esig
manifest.sig
package.xml

X.509 certificate chains
X.509 certificate chains allow tracing keys to a trust anchor

JuniperRootCA (trust anchor)
 \
 EngineeringCA (intermediate CA)
 \
 PackageCA (intermediate CA)
 \ \
 \ PackageProduction_2018 (signing for releases)
 \
 PackageDevelopment_2018 (signing key for developers)

CA private keys never accessible from network

Signing private keys stored in signing server/HSM

6/8/2018 Adding verification to FreeBSD loader

file:///Users/sjg/Public/talks/obj/loader-veriexec-slides.htm 3/7

Manifest signatures
each manifest is signed:

manifest data
manifest.esig EC signature
manifest.ecerts X.509 certificate chain

RSA+SHA1 (.sig) deprecated since 2014

Junos ignores .sig if .esig supported

Userland veriexec
must be root to run
verifies signature using supplied certificate chain

may need to load extensions to handle 3rd party certificates
rejects manifest if unverified

opens each path referenced by manifest
passes file descriptor, hash, flags and label to kernel

kernel tracks files by dev,inode,gen
multiple names and symlinks just work
copy does not

Loader
loads kernel and modules

cannot have secure boot if loader does not verify
only recently practical

limited functionality and resources
filesystem support is minimal

deals with each file only once

Loader verification - goals
verify everything possible

allow for mutable loader.conf
allow for tunable behavior

retain flexibility of X.509 certificates
key to simple upgrade/downgrade
loader itself may be signed by whatever means prior boot stage wants

minimize impact to size, boot time and complexity
find manifest automatically

allow explicit load as well

Loader verification - design
simple data store

manifest content has to be in memory for verification; so keep it
need to track path prefix per manifest

strictly pathname based lookup
verification status tracked by dev,inode

ordered (by prefix length) linked list of manifest content

BearSSL
new SSL library by Thomas Pornin; designed for embedded environments

library does no memory allocations
provides all functionality needed for X.509 certificates and signature verification

written in forth
at least an order of magnitude smaller than OpenSSL
depending on primary boot stage, loader may be limited to 640Kb

using OpenSSL would have added at least 3Mb to loader
using BearSSL less than 100Kb

6/8/2018 Adding verification to FreeBSD loader

file:///Users/sjg/Public/talks/obj/loader-veriexec-slides.htm 4/7

Fingerprint data store
a linked list with each element being:

struct fingerprint_info {
 char *fi_prefix; /**< manifest entries relative to */
 char *fi_skip; /**< manifest entries prefixed with */
 const char *fi_data; /**< manifest data */
 size_t fi_prefix_len; /**< length of prefix */
 size_t fi_skip_len; /**< length of skip */
 dev_t fi_dev; /**< device id */
 LIST_ENTRY(fingerprint_info) entries;
};

list ordered by length of fi_prefix; longest and most recent first

Self tests
FIPS compliance requires running Known Answer Tests before use

Test each supported hash method

Test verifying each supported signature type

OpenPGP signatures can also be supported

FreeBSD/x86 bootstrap loader, Revision 1.1
(sjg@kaos.jnpr.net, Sun Nov 19 19:12:21 PST 2017)
Testing hash: sha1 Passed
Testing hash: sha256 Passed
Testing verify certificate: EngineeringEcCA Passed
Testing verify OpenPGP signature: Passed

Loading Junos BSDX
support for multiple packages and package sets complicates loader task

loader sees:

/packages/sets/active/boot/os-kernel/kernel
/packages/sets/active/boot/os-kernel/contents.iso
/packages/sets/active/boot/netstack/netstack.ko

which are really:

/packages/sets/active/os-kernel -> /packages/db/os-kernel-$version
/packages/sets/active/boot/os-kernel -> /packages/db/os-kernel-$version/boot
/packages/db/os-kernel-$version/manifest
/packages/db/os-kernel-$version/manifest.esig
/packages/db/os-kernel-$version/manifest.ecerts
/packages/db/os-kernel-$version/boot/kernel

Loading Junos BSDX example
Verified /boot/manifest signed by PackageDevelopmentEc_2018
Verified /boot/boot.4th
Verified /boot/platform.4th
Verified /boot/loader.rc
Verified /boot/junos-menu.4th
...
Unverified: /boot/device.hints: no entry
Verified /packages/sets/active/boot/junos-modules/../manifest signed by PackageDevelopmentEc_2018
Verified /packages/sets/active/boot/junos-modules/loader.conf
Verified /packages/sets/active/boot/junos-modules/init.4th
Unverified: /boot/ffp.cookie: no entry
Verified /packages/sets/active/boot/os-kernel/../manifest signed by PackageDevelopmentEc_2018
Verified /packages/sets/active/boot/os-kernel/loader.conf
Verified /packages/sets/active/boot/os-crypto/../manifest signed by PackageDevelopmentEc_2018
Verified /packages/sets/active/boot/os-crypto/loader.conf
...
Verified /packages/sets/active/boot/os-kernel/kernel
/packages/sets/active/boot/os-kernel/kernel text=0x46f678 data=0x44720+0x30e42c syms=[0x4+0x61eb0+0x4+0x7fe79]
...
Verified /packages/sets/active/boot/os-kernel/contents.izo
/packages/sets/active/boot/os-kernel/contents.izo size=0x7a0200

6/8/2018 Adding verification to FreeBSD loader

file:///Users/sjg/Public/talks/obj/loader-veriexec-slides.htm 5/7

Verify APIs
loader sys/boot/common/verify.c:

int verify_file(int fd, const char *filename, off_t off, int severity);
static int find_manifest(const char *name);
int load_manifest(const char *name, const char *prefix,
 const char *skip, struct stat *stp);

libve:

unsigned char *verify_asc(const char *sigfile, int flags);
unsigned char *verify_sig(const char *sigfile, int flags);
void fingerprint_info_add(const char *filename, const char *prefix,
 const char *skip, const char *data, struct stat *stp);
int verify_fd(int fd, const char *path, off_t off, struct stat *stp);

Verifying a file - is_verified
loader tracks status of each file it has checked

simple linked list - most recent first
keyed by dev,ino of file as reported by fstat

had to add support for st_dev and st_ino to ufs_stat
st_ino is simple
st_dev is trickier I ended up cramming fs_id (64bit) into st_dev (32bit)

Verifying a file - find_manifest
to verify /packages/sets/active/boot/os-kernel/kernel
verify_file calls find_manifest; looks for manifest.esig and ../manifest.esig relative to file to be verified
will find /packages/db/os-kernel-$version/boot/../manifest.esig
if manifest not already in data store

attempt to verify using corresponding .ecerts
if successful add manifest to data store
fi_prefix = "/packages/sets/active/boot/os-kernel"
regardless; result of signature verification is recorded

if manifest is not verified, nothing in it can be

Verifying a signature
verify_sig uses manifest.*certs for manifest.*sig

returns content of manifest if verified.
BearSSL does not allow ignoring certificate validity period
loader cannot trust time to be accurate anyway

use st_mtime of files to update time used for verification.
added st_mtime to ufs_stat

Verifying an OpenPGP signature
X.509 certificates are great for vendors like Juniper or FreeBSD.org
OpenPGP is simpler for self signing
verify_asc uses manifest.asc and embedded public key(s)

returns content of manifest if verified

Verifying a file - verify_fd
verify_file calls verify_fd

try to lookup kernel in fingerprint data store
in Junos we actually want to look for boot/kernel
hence; fi_skip = "boot"

if found, we have sha1=deadbeef....cafebabe
tells us the desired value and the method to be used
hash file and compare, if they match; file is verified

record and return status; success or reason for failure

6/8/2018 Adding verification to FreeBSD loader

file:///Users/sjg/Public/talks/obj/loader-veriexec-slides.htm 6/7

Verify failure
verification can fail for multiple reasons

VE_FINGERPRINT_WRONG hash does not match manifest; always results in failure
VE_FINGERPRINT_NONE no matching manifest entry found

may result in failure depending on severity and threshold setting
VE_FINGERPRINT_UNKNOWN matching manifest entry found but no (recognized) hash.

may result in failure depending on manifest and threshold setting

Verify file - severity
severity arg to verify_file indicates importance of verification:

#define VE_GUESS -1 /* let verify_file work it out */
#define VE_TRY 0 /* we don't mind if unverified */
#define VE_WANT 1 /* we want this verified */
#define VE_MUST 2 /* this must be verified */

VE_MUST used for kernel, modules etc

VE_GUESS used by most callers

VE_TRY used for *.conf, *.hints etc.
VE_WANT used for rest

if verification status not VE_FINGERPRINT_WRONG and severity less than accept threshold, return success.

Controlling loader settings
for FIPS mode we want strict enforcement

only accept VE_FINGERPRINT_NONE for VE_TRY
for debugging/experimenting we might want very lax enforcement
default is in between

accept VE_FINGERPRINT_NONE up to VE_WANT
how to configure without compromising security?

Tweak packages: loader-ve-*
since this implementation is strictly pathname based we can leverage verified pathnames to communicate to loader
loader-ve-strict set strict enforcement

contains init.4th that attempts to load file loader.ve.strict
loader can spot the pattern loader.ve.* and interpret the extension

set accept threshold to VE_WANT
check result of self-tests; if they failed panic

loader-ve-off turn verification off
some folk think they are safe in their data center

Performance
loader does not read modules in a manner conducive to hashing

verify_fd has to read whole file, then rewind to original offset this does not matter for small files, but hurts for kernel etc.
overhead is about 3% for Junos booting from Compact Flash.

Optimized API for modules
libve provides an API to reduce hashing overhead:

struct vectx* vectx_open(int, const char *, off_t, struct stat *, int *);
ssize_t vectx_read(struct vectx *, void *, size_t);
off_t vectx_lseek(struct vectx *, off_t, int);
int vectx_close(struct vectx *);

can hash file as side-effect of reading
requires extensive re-work of loader (eg load_elf.c)
verification happens at close

only use for modules
panic on failure ?

6/8/2018 Adding verification to FreeBSD loader

file:///Users/sjg/Public/talks/obj/loader-veriexec-slides.htm 7/7

Loader is OS version agnostic
as a standalone application, loader does not care about OS version
loader from stable/11 can boot stable/6
since loader needs to be signed specially for secure-boot using same binary for many releases can help.

Q&A
Questions

Author: sjg@juniper.net
Revision: $Id: loader-veriexec-slides.txt,v 0d045147724a 2018-06-01 20:10:40Z sjg $
Copyright: Juniper Networks, Inc.

mailto:sjg@juniper.net

