Verifiedexec: An Introduction file:///home/user/blymn/presentations/veriexec/veriexec.html

Verifiedexec: An Introduction

Brett Lymn

Origins

e Idea formulated late last millenium

e A sudden rise of trojans and root-kits

e Why should the kernel run or read anything it is told to?
e How could the kernel tell if a file had been modified?

Original Implementation

e Decided to use an in-kernel list of fingerprints

e On file access the fingerprint of the target file is evaluate and compared to the in-kernel list

e The obvious problem is performance, 1.7x slower to build a kernel with verifiedexec
evaluating fingerprints every time

¢ Evaluating every time also kills demand paging

e Use caching of the fingerprint evaluation to reduce performance impact to about 5%

Original Implementation 2

e The problem using caching is that the boundary of trust only extends to the walls of the
machine case. NFS and SAN storage are a problem.

e There is a fix for this problem, more on this later

e Initial code was implemented and found to work as expected

e During the implementation it was found the exec path for a binary and a shell script were
different.

e The implementation took advantage of this difference to provide an interesting feature.

e Code committed to the NetBSD source tree in late 2002.

Current State

The kernel code has has many improvements:

switched from a linear list to hash tables for the in-kernel fingerprint list
uses file generation numbers instead of inodes (no longer FFS specific)
support for more fingerprint hash functions

lof 4 05/15/12 04:29



Verifiedexec: An Introduction file:///home/user/blymn/presentations/veriexec/veriexec.html

e ability to configure out certain hash functions
e removed abuse of unrelated structures

More Current State

¢ Tool for loading the fingerprints can read back the in-kernel list

e Tool for scanning all file systems and building an initial fingerprint list

o Separate sysctl facility for setting the veriexec mode of operation (aka strict level)
e Able to query supported fingerprint methods via sysctl

Operation

e kernel must have veriexec support compiled in

e Can select which fingerprint hash methods to support. Though removing fingerprint support
does not affect kernel size much. More for compliance.

e Currently supports RMD160, SHA256, SHA384, SHA512, SHA1 and MD5

¢ Run the helper tool veriexecgen to scan the file systems and create a basic fingerprint file,
edit the output to suit

e Load the fingerprints using veriexecctl

o Set the "strict" level using sysctl

The fingerprint file

e Has the following format:
path type fingerprint flags

e Where:
o path is the absolute path to the file
o type is the fingerprint method
o fingerprint is the actual fingerprint for the file
o flags determine veriexec behaviour, some flags are direct, indirect, untrusted and file

What the flags mean

¢ untrusted, the file is on storage not under direct control of the kernel. Forces an evaluation
of the fingerprint each access.

o file, a simple file that can be read. Things like shared libraries, configuration files

e direct a file that can be executed from the command line

e indirect an executable that cannot be executed from the command line but can be used as a
script interpreter

20f4 05/15/12 04:29



Verifiedexec: An Introduction file:///home/user/blymn/presentations/veriexec/veriexec.html

e Multiple flags can be used in a comma separated list, e.g. a shell script would need both file
and direct flags. There are convenience aliases, see the man page.

direct vs. indirect

e When implementing verifiedexec I noticed that the code path taken for the exec of a binary
was different to that taken when a shell script was executed

e This difference in code path meant that a distinction could be made between an invocation
from, say, the command line (i.e. direct) and the same binary being used as a shell
interpreter (i.e. indirect)

¢ By making this distinction verifiedexec can permit a set of fingerprinted scripts to run but
can block an attempt to run the script interpreter from the command line and thus prevent
misuse of the interpreter

e It can also prevent the exec /bin/sh exploits, make /bin/sh an indirect execution along with
all other shells. Copy a shell interpreter to an obfuscated name and make that the login shell
for accounts.

Activation

e First step is to load the fingerprint list using veriexecctl
e Then set the sysctl kern.veriexec.strict to the desired level. The levels are:
o 0 learning mode allows fingerprints to be loaded or updated. Is verbose about
mismatches, incorrect file type access and other things that will cause problems later
o 1 IDS mode denies access to files with mismatched fingerprints. Writes to
fingerprinted files is allowed. Mismatched file type access is allowed (e.g. file vs
direct). Along with other restrictions
o 2 IPS mode all of the previous restrictions and also prevents writes to fingerprinted
files, enforces file type access, plus more
o 3 Lockdown mode all previous restrictions plus access to non-fingerprinted files is
denied. Write access only allowed to file descriptors already open. Cannot create new
files.
e It is expected most people would run at strict level 2 but use levels 0 and 1 to debug or
validate fingerprint list

Future I

e The untrusted flag cannot protect a long running binary

o Attacker can overwrite pages in a binary on untrusted storage without detection

e The pager will bring in these pagers and the code will be executed

e Can build a set of page fingerprints in parallel with the fingerprint evaluation - if the latter is
ok then the former can be used.

e Modify pager to check pages as they come in, terminate binary if there is a mismatch

3of4 05/15/12 04:29



Verifiedexec: An Introduction file:///home/user/blymn/presentations/veriexec/veriexec.html

Future I1

e Digitally sign fingerprints

e Could mean fingerprints can be loaded whilst in operation

¢ Digitally signed binaries

¢ Both require in-kernel crypto support

e Could pre-populate a table with critical start up file fingerprints to narrow the start up hole

4of4 05/15/12 04:29



