
Verifiedexec: An Introduction

Brett Lymn

Origins
Idea formulated late last millenium
A sudden rise of trojans and root-kits
Why should the kernel run or read anything it is told to?
How could the kernel tell if a file had been modified?

Original Implementation
Decided to use an in-kernel list of fingerprints
On file access the fingerprint of the target file is evaluate and compared to the in-kernel list
The obvious problem is performance, 1.7x slower to build a kernel with verifiedexec
evaluating fingerprints every time
Evaluating every time also kills demand paging
Use caching of the fingerprint evaluation to reduce performance impact to about 5%

Original Implementation 2
The problem using caching is that the boundary of trust only extends to the walls of the
machine case. NFS and SAN storage are a problem.
There is a fix for this problem, more on this later
Initial code was implemented and found to work as expected
During the implementation it was found the exec path for a binary and a shell script were
different.
The implementation took advantage of this difference to provide an interesting feature.
Code committed to the NetBSD source tree in late 2002.

Current State
The kernel code has has many improvements:
switched from a linear list to hash tables for the in-kernel fingerprint list
uses file generation numbers instead of inodes (no longer FFS specific)
support for more fingerprint hash functions

Verifiedexec: An Introduction file:///home/user/blymn/presentations/veriexec/veriexec.html

1 of 4 05/15/12 04:29



ability to configure out certain hash functions
removed abuse of unrelated structures

More Current State
Tool for loading the fingerprints can read back the in-kernel list
Tool for scanning all file systems and building an initial fingerprint list
Separate sysctl facility for setting the veriexec mode of operation (aka strict level)
Able to query supported fingerprint methods via sysctl

Operation
kernel must have veriexec support compiled in
Can select which fingerprint hash methods to support. Though removing fingerprint support
does not affect kernel size much. More for compliance.
Currently supports RMD160, SHA256, SHA384, SHA512, SHA1 and MD5
Run the helper tool veriexecgen to scan the file systems and create a basic fingerprint file,
edit the output to suit
Load the fingerprints using veriexecctl
Set the "strict" level using sysctl

The fingerprint file
Has the following format:

path type fingerprint flags

Where:
path is the absolute path to the file
type is the fingerprint method
fingerprint is the actual fingerprint for the file
flags determine veriexec behaviour, some flags are direct, indirect, untrusted and file

What the flags mean
untrusted, the file is on storage not under direct control of the kernel. Forces an evaluation
of the fingerprint each access.
file, a simple file that can be read. Things like shared libraries, configuration files
direct a file that can be executed from the command line
indirect an executable that cannot be executed from the command line but can be used as a
script interpreter

Verifiedexec: An Introduction file:///home/user/blymn/presentations/veriexec/veriexec.html

2 of 4 05/15/12 04:29



Multiple flags can be used in a comma separated list, e.g. a shell script would need both file
and direct flags. There are convenience aliases, see the man page.

direct vs. indirect
When implementing verifiedexec I noticed that the code path taken for the exec of a binary
was different to that taken when a shell script was executed
This difference in code path meant that a distinction could be made between an invocation
from, say, the command line (i.e. direct) and the same binary being used as a shell
interpreter (i.e. indirect)
By making this distinction verifiedexec can permit a set of fingerprinted scripts to run but
can block an attempt to run the script interpreter from the command line and thus prevent
misuse of the interpreter
It can also prevent the exec /bin/sh exploits, make /bin/sh an indirect execution along with
all other shells. Copy a shell interpreter to an obfuscated name and make that the login shell
for accounts.

Activation
First step is to load the fingerprint list using veriexecctl
Then set the sysctl kern.veriexec.strict to the desired level. The levels are:

0 learning mode allows fingerprints to be loaded or updated. Is verbose about
mismatches, incorrect file type access and other things that will cause problems later
1 IDS mode denies access to files with mismatched fingerprints. Writes to
fingerprinted files is allowed. Mismatched file type access is allowed (e.g. file vs
direct). Along with other restrictions
2 IPS mode all of the previous restrictions and also prevents writes to fingerprinted
files, enforces file type access, plus more
3 Lockdown mode all previous restrictions plus access to non-fingerprinted files is
denied. Write access only allowed to file descriptors already open. Cannot create new
files.

It is expected most people would run at strict level 2 but use levels 0 and 1 to debug or
validate fingerprint list

Future I
The untrusted flag cannot protect a long running binary
Attacker can overwrite pages in a binary on untrusted storage without detection
The pager will bring in these pagers and the code will be executed
Can build a set of page fingerprints in parallel with the fingerprint evaluation - if the latter is
ok then the former can be used.
Modify pager to check pages as they come in, terminate binary if there is a mismatch

Verifiedexec: An Introduction file:///home/user/blymn/presentations/veriexec/veriexec.html

3 of 4 05/15/12 04:29



Future II
Digitally sign fingerprints
Could mean fingerprints can be loaded whilst in operation
Digitally signed binaries
Both require in-kernel crypto support
Could pre-populate a table with critical start up file fingerprints to narrow the start up hole

Verifiedexec: An Introduction file:///home/user/blymn/presentations/veriexec/veriexec.html

4 of 4 05/15/12 04:29


